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Introduction

Many modern computing systems use highly specialized heterogeneous
memory architectures to achieve greater performance or better power con-
sumption. The heterogeneous memory architecture is the most relevant
for embedded systems on a chip, DSP, microprocessors for the Internet of
things [20], machine learning tasks and computer vision, as well as high-
performance multiprocessor computing systems with shared memory. Data
access is the usual bottleneck of such applications, and homogeneous ar-
chitectures are less efficient than specialized solutions for applications with
regular data flow [19]. One common solution is to use several independent
physical memory banks, divided by address ranges. This architecture allows
you to increase memory bandwidth due to the fact that requests for data
from different memory banks can be carried out in parallel.

Heterogeneous memory architectures require special support in the soft-
ware model and high-level programming languages. For example, C89 uses a
flat memory model and the programmer has full control over the placement
of objects in memory. However, for working with heterogeneous memory
architectures, there are extensions of the C99 standard that add address
space attributes [21], which allow you to specify memory regions for objects
and pointers. In OpenCL, support for heterogeneous memory architectures
is built into the standard. Data can be located in several types of memory
and there is a host API that allows you to manage memory allocation and
data transfers. However, OpenCL memory is divided into predefined types
(local, global, private, constant, etc.), which corresponds to the GPU, but
does not cover more specialized computing devices with multi-bank archi-
tecture. Virtual machine-based languages such as Java usually leave the
programmer less control over memory allocation. The task of the distri-
bution of objects and garbage collection in memory falls on the execution
environment.

With the increasing complexity of modern programs and algorithms,
increases the need for high-level programming languages to reduce system

development time. On the other hand, the competition of device manufac-



turers is growing, and specialized architectural solutions are used increas-
ingly more often.

Allocating program data for heterogeneous memory by annotating data
types with address spaces is a time-consuming task that requires careful
analysis of the program data flow and profiling of the critical sections of
code. Manual data distribution can lead to errors and does not guarantee
the final performance of the program, since it is necessary to take into
account possible conflicts of access to memory banks and how data is used
at the level of the entire program.

The variety of devices, tasks and applications of processors leads to the
need to quickly and efficiently adapt existing applications to new configu-
rations and memory structure.

In this work we try to solve this problem by providing a solution that

automates data assignment between memory banks.



1 Problem statement

The primary aim of this work is to design and implement a solution that
would reduce the amount of manual work needed to adapt a program to a
new memory configuration. This solution should be capable of doing whole
program data flow analysis of C and C-+-+ code to automatically map the
static data to the appropriate memory banks of multibank heterogeneous
architecture in a way that maximizes parallel access.

To achieve this goal the following tasks have been formulated:
e review existing approaches and algorithms used in them

e design the solution

e implement the solution

e evaluate implementation



2 Related work

The problem of bank assignment is similar to the problem of register
allocation. Indeed, in both cases we have a limited number of resources
(registers and banks) which need to be assigned to some data in the most
optimal way with the condition that different values can’t occupy the same
resource at once, though it is only a soft requirement for memory banks. As

such, we reviewed the works related to both register and bank allocation.

2.1 Bank allocation

There have been several works that tackle the problem of data assign-
ment for dual memory banks. An early approach for dealing with dual
memory banks in C is presented in [13]. In this work, the solution is imple-
mented by expanding the original Gepard C compiler with extra passes and
running the backend twice. An initial run of the backend is used to deter-
mine the exact set of memory accesses, which is then used to back-annotate
the IR for the second and final backend run. For finding the optimal as-
signment to the memory banks, they use an Integer Linear Programming
(ILP) approach.

Solution proposed in [24]| operates on IR generated by the compiler. It
uses special independence graph and solves weighted Max-Cut problem. It
takes execution frequency and access proximity into account but it is not
clear how well it translates into the final machine code.

Another work that takes ILP approach is [16], which operates on the
source level converting C code into DSP C. As a model for program data
usage, it uses the Interference Graph. It also proposes two additional al-
gorithms, one based on graph soft coloring and the other based on Genetic
Programming, which both perform better than ILP approach.

The ILP is also used by the [11] work. They operate on the synchronous
data flow [12] specifications and the simple conflict graphs that accompany
such programs. However, they only evaluate their algorithm against bench-
marks for which two-coloring exists, so their technique is not demonstrated

to work on hard problems.



Finally, in [15] the problem of bank assignment is considered in the
context of multi-core systems with shared memory. In such systems multiple
banks are exploited by assigning data in a way that minimizes simultaneous
access to some memory bank from multiple cores. This work proposes
general models for multi-core system and executed parallel program. The
algorithm uses graph coloring via collision graphs with multiple heuristics
and relies on a run-time statistics of the problem tasks collected during
the initial execution of the program. The assignment is when improved in
multiple consecutive iterations with updated statistics on each run.

Below is a table with a short summary of some reviewed papers.

Paper Algorithmic Works on Resulting tool
approach
[16] ILP, Stochastic | C source code ISO C to
Coloring, DSP-C compiler
Genetic
Programming
[24] Max Cut IR IR optimization
problem solving pass
[13] ILP ASM Additional
compilation
phases
[11] ILP SDF NA
representation
[15] Iterated Greedy | NA NA
Coloring based
on profiling data

2.2 Register allocation

Until recently common approach to register allocation was to view the
allocation to k registers as k-coloring of the graph problem and run several
iteration of a greedy register allocation algorithm trying to improve the
results on each run [2, 1].

More recent works rely on the fact that the chordal graphs can be opti-



mally k-colored in polynomial (even linear) time and that in many languages
interference graphs for most functions turn out to be chordal [18]. Further-
more, in [5] it is shown that interference graph for any strict program is
chordal. This is exploited for fast k-coloring, however the real complexity
comes from spilling and coalescing steps which are necessary when there is
not enough registers. [22| explains that the spilling, coalescing and respec-

tive optimization problems are what makes register allocation NP-complete.



3 Design

In this section, we define memory model that we use to describe our
target memory architecture, give the formal definition of the model used
to represent program’s data flow and of the problem we are going to solve,
then we propose the top-level architecture for the solution and describe the

general tool flow.

3.1 Memory model

Multibank heterogeneous memory architectures have many different ap-
plications and as such can vary greatly in their specifics. For example,
256 Andey processor [26] is a multicore system used in high performance
computing which takes advantage of multibank heterogeneous memory ar-
chitecture. This processor integrates 256 Processing Elements (PE), which
are grouped into 16 compute clusters. Each compute cluster has a local
on-chip memory with 2 MB capacity, which is organized in 16 independent
SRAM banks. These are arranged in two sides (left and right). The PEs
are organized in 8 pairs. Each pair has two memory buses (one for each
side), which can be utilized in parallel by the two cores.

Other frequent users of multiple memory banks are systems on a chip and
DSPs. DSP processor based embedded systems have an on-chip memory,
which typically has a single cycle access time [17]. The on-chip memory, also
referred to as scratch pad memory or closely coupled memory, is mapped
into an address space disjoint from the off-chip memory but connected to
the same address and data buses. Typically, the scratch-pad memory is
organized into multiple memory banks to facilitate multiple simultaneous
data accesses. DSP Processors typically have 2 or more address generation
units and multiple on-chip buses to facilitate multiple memory accesses.

Further, each on-chip memory bank can be organized either as a single-
access RAM (SARAM) or as a dual-access RAM (DARAM), to provide sin-
gle or dual accesses to the same memory bank in a single cycle. For example,
Texas Instruments TMS320C54X digital signal processor has two data read
buses and one data write bus [8] and, Texas Instruments TMS320C55X

10



processor has three data read buses and two data write buses, since con-
current access to the same array are common in DSP applications [9]. The
DARAM and SARAM regions can be recognized using multiple memory
banks to enable two concurrent accesses.

In this work our focus is on the problem of data mapping optimization
for DSPs. As such, we aimed to create a memory model that would allow
to sufficiently approximate the most common multibank memory configu-

rations found in typical DSPs as well as being simple enough to define.

Definition 1 A memory configuration is a tuple (B,c¢,p), with B =
{b1, ..., bn, } aset of disjoint memories (memory banks). ¢: B — N gives the
capacity of each memory and p : B — N gives the penalty of the load /store

operation to this memory.

3.2 Data usage model and formal problem definition

One of the common ways to represent program data flow in the presence
of parallel access conflicts is an Interference Graph (IG) which was proposed
in [23] and used with slight modifications in several related works [13, 15,
16, 24].

Definition 2 We will call a weighted graph G = (V, E) an Interference
Graph for some program P if each global variable p in P has a corresponding
v, € V and for each potentially parallel access between variables pl and p2
there exists an edge (v,1,vp2) = e € E. Weight function w : £ — N maps
each interference edge with the number roughly equivalent to the number
of parallel accesses represented by that edge. Because of their simplicity,
popularity and the fact that graphs are easily representable both visually
and textually we settled on Interference Graphs as our data usage model.
An example of a basic C program that calculates dot products of some
arrays and its corresponding Interference Graph can be seen on fig. 1.
Now we have everything we need to formally define the task we are going

to solve. For a given memory configuration (B,c,p) and an Interference
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int a[100], b[100], c[100]; o

int dot_product(const int *x, const int *y, int n) {

int acc = 0;
for(inti=0;i<n;i++){

acc += x[i]*y[i];
b

return acc;

¥

int main() {
return dot_product(a, b, 100) + dot_product(a, ¢, 50) + dot_product(b, c, 50);

| <.
Figure 1: Program written in C and its corresponding Interference Graph

Graph G = (V,F) we want find such data mapping m’ : V. — B, that
m' = arg minzm(vi#m(w) w((vi,v))

In otﬁler words, we want to find mapping of program’s variables to mem-
ory banks that gives minimum total interference, which is the sum of weights

of the edges between interfering (in the same memory) vertices.

3.3 Tools

The data assignment problem can be split into three major subtasks:
1. whole program analysis to build data usage model
2. identification of the optimal data mapping based on this analysis

3. application of the selected data mapping to the original program

The choice of Interference Graphs as a data usage model allowed us to
separate the solution into two independent tools, because graphs can be
easily represented in textual form which makes it easy to communicate the
results of one tool to another.

The two tools were called Analyzer and Allocator.

Analyzer does the first subtask of analyzing program’s data flow and

produces the Interference Graph, which is then taken as an input to the
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C/C++ program |:> LLVM frontend |:> LLVM IR :> Analyzer

Td iy

Developer or . Interference
soriEler <:I Data mapping <:I Allocator <: -

Figure 2: The structure of passes in the analyzer

Allocator that tries to come up with the optimal mapping of data to memory
banks.

Such division makes it possible to test and develop both tools indepen-
dently since Allocator can consume manually crafted Interference Graphs
while Analyzer’s output is useful for the developer by itself for manual op-

timizations.

3.3.1 Analyzer

Since we need to support programs written in C and C++ languages, we
had to either implement whole C/C-+ parsing and analysis ourselves or use
an existing solution. Because parsing C/C+- is notoriously hard we chose
to implement our tool using powerful cross-platform compiler framework
LLVM.As a result, our Analyzer does not work on C/C++ code directly,
but analyzes IR produced by LLVM using provided mechanism of code
passes. The final tool flow is shown in fig. 2. First, C/C++ program is
compiled to LLVM IR, for which then Analyzer produces the Interference
Graph. Allocator takes this graph and produces the data mapping which
is then used by either the compiler or developer to annotate the original

program.

3.3.2 Allocator

Allocator takes the Interference Graph produced by Analyzer, memory

configuration, such as the number of available memories and their size, and
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<<Interface>> 1 1 Graph
GraphColorer <>_
-mGraph : Graph
P p N .\
+validateGraph() : bool <<yuse>> <<yse>>
+colorGraph() L L
+graph() : Graph <<Interface>> <<Interface>>
GraphParser GraphPrinter
I I I I
ExhaustiveColorer GreedyColorer DotParser DotPrinter

Figure 3: The simplified class diagram of the Allocator

produces a mapping of program variables to appropriate memory banks.
Since each variable is represented by the vertex in the Interference Graph,
this task can be reduced to the problem of coloring the input graph in a
way that will minimize the interference, i.e. sum of edge weights between
vertices of the same color, there each color corresponds to specific memory
bank.

Main requirement for Allocator was the ability to easily add new al-
gorithms to test and develop new coloring heuristics. Its simplified UML
class diagram is shown in fig. 3. Each coloring algorithm implements the
GraphColorer interface which holds Graph read from the input in the proper

format and returns its colored version.
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(Functiou Orderingj—{Pointer Analysis) [XY Access Patterns Recognitiouj

[Live Variables Analysis)—b[[)ata Flow Checkerj

Figure 4: The structure of passes in the analyzer

4 Implementation

In this section, we describe the implementation details of the Analyzer
and Allocator tools, such as the data format chosen for Interference Graph
and constraints representations. We also explore different implemented col-

oring algorithms used by the Allocator.

4.1 Analyzer

Analyzer consists of several LLVM passes that analyze program’s IR
produced by the LLVM backend to build Interference Graph. The way
those passes interact is show on fig. 4. Here, an arrow pointed from pass A

to pass B means that pass B uses the result of pass A.

Function Ordering This pass analyzes program’s call graph and pro-
duces two function orderings: top-down and bottom-up, i.e. from top
(main) to bottom (leaf functions) and reverse. Currently this pass ignores
recursion and indirect function calls, i.e. calls done through a pointer. How-
ever, this is was not have a significant impact on our use case since such
constructs are rarely used in the typical DSP programs or at least in their

performance-critical parts.

Pointer Analysis This pass takes orderings produced by the Function
Ordering pass and tries to build a model of global data usage through
pointer analysis, i.e. it attempts to answer for each pointer in the IR which

data can it point to. It does so by walking functions first in a bottom to top
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ordering to build a template of pointer usage for each function parametrized
by their pointer arguments. Then it walks from top to bottom substituting

template parameters with concrete data known at the call site.

Live Variables Analysis This pass uses Pointer Analysis to determine

when certain global variables are live and when they become dead.

XY Access Patterns Recognition This pass is used to mark “interest-
ing instructions”, that is IR instructions that can be compiled into machine
instructions utilizing parallel bank access. This is mostly dependent on

target architecture and should be implemented for each CPU.

Data Flow Checker This is the final pass that takes analysis results
collected so far by the previous passes and uses them to construct the final

Interference Graph.

4.1.1 Textual graph representation

For textual representation of the Interference Graph we chose dot for-
mat [3]. This format has the advantages of being human readable, versatile,
and supported by many programming languages and tools which makes it
easier to consume Analyzer results by Allocator, visualization tools and
other programs. Edges weights and vertices properties (such as their size
and number of uses) are encoded in their labels. Below is the dot represen-

tation of the Interference Graph of the program from fig. 1.

graph ’main’’
0 [shape=record,label=""{al|s:400 u:150}"’];
1 [shape=record,label=""{b|s:400 u:150}"’];
2 [shape=record,label="{c|s:400 u:100}’];
3 [shape=record,label=""{0ther|s:0 u:0}"’];

0 -- 1 [label=100" style="’bold’’];
0 -- 2 [label="50" style="’bold’’];
1 -- 2 [label="50" style=""bold’’];

16



While printing the Interference Graph in a dot format is easy due to
the format’s powerful syntax, parsing it reliably can be much trickier so we

delegate that to the graphviz C library used by Allocator.

4.2 Coloring algorithms

We have implemented several graph coloring algorithms. In this section,
we give their description.

Below we use the following notation:

G Interference Graph

E The set of G’s edges

|4 The set of G’s vertices

n The number of vertices |V/|

k The number of available colors (memories)

X(G) The chromatic number of G, that is, the minimum number of
colors required to color the vertices of G in such a way that no

two adjacent vertices share the same color
w(G) The clique number of G, that is, the number of vertices in a

maximum clique in G

4.2.1 Branch and Bound

The first algorithm is a precise algorithm based on exhaustive search.
We iterate over all k" possible colorings and in ©(m) time we check if a
coloring is minimal and satisfies color size constraints. Overall running of
the such algorithm is therefore ©(m - k™).

This is a good starting point considering the problem of graph coloring is
NP-complete [25], but it can be refined further. For example, in practice we
can significantly decrease the number of colorings considered and improve
the typical running time, if we apply a well-known technique called branch-
and-bound. For each partial coloring of G' (e.g., coloring, where only n’ <
|V| vertices were colored) we estimate lower end bounds for cost function
value. If the lower bound of some partial coloring is bigger than global
minimal upper bound of some other partial coloring, we conclude than this

partial coloring, however good we color the rest of the graph, cannot induce
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minimal coloring, so we "cut” on current partial coloring and go on with the
next one. In our implementation, lower bound is calculated by applying cost
function to a sub-graph G’ of G where vertices of G' are already colored
vertices of (G, and edges of G’ are edges of G connecting already colored
vertices. Upper bound is cost function value of current minimal coloring.

Intuition and benchmarking tells us that the running time of the al-
gorithm can be greatly decreased, if we find a good ordering in which we
consider vertices. Indeed, we want to "cut” on "bad” partial colorings as
soon as possible, so that we could omit lots of unnecessary checks. The
ordering must depend on some "vertex importance” criterion, where most
“important” vertices come first in the ordering. In our implementation, we
consider vertex a "more important” than vertex b, if deg(a) > deg(b) (e.g.,
if variable a interferences with more variables than b).

We can also omit checks of the colorings that differ only by the permuta-
tion of colors when all memories have identical load penalty since in this case
the permutation of colors would not change the overall penalty. We say that
colorings a and b are members of the same penalty equality class, if coloring
a is the same as coloring b for some permutation of colors in a. for exam-
ple, colorings RED-BLUE-BLUE and BLUE-GREEN-GREEN are in the
same equality class, because if we apply [RED:=BLUE, BLUE:=GREEN,
GREEN:=RED] substitution to the coloring RED-BLUE-BLUE, it becomes
BLUE-GREEN-GREEN. The number of penalty equality classes is | k" /k!],
so we can improve our algorithm further by checking just one member of
the penalty equality class rather than checking them all, and then permute
all the colors to fit into memory constraints.

After the aforementioned optimizations, the running time of exhaustive
search becomes bound by O(m - (kK"/k! + k!)), in pathological cases and
much better run time in the typical cases which can be reduced even more

by implementing a more sophisticated "vertex importance” criterion.

4.2.2 Greedy coloring

We have implemented the optimal solution that finds the best coloring

possible, but since graph coloring is NP-complete the optimal algorithm is
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bound to be at least sub-exponential in the number of vertices of 1G.This
means that waiting for the optimal algorithm to finish on graphs for more
sophisticated programs or on graphs with more complex data flow opti-
mizations may take months, years and even centuries. However, we may
obtain sub-optimal coloring in more decent amount of time by implementing
heuristics algorithm.

The first heuristic algorithm uses simple greedy coloring. It goes from
the first vertex to the last and tries to color it in the first available color.
If there is no such color it adds vertex to the list for later processing. At
the end, all uncolored vertices are colored in the color that would give the
minimum interference (sum of edges weights) with its neighbors.

In this algorithm there are two main places that affect the quality of
the final coloring. The first one is the initial order in which the vertices are
considered by the greedy algorithm. The second one is the order in which
remaining uncolored vertices are considered by the final coloring step.

We have tested several possible heuristics for determining these orders
and in the end considering vertices with the highest sum of interferences first
proved to give the best overall results. However, we were able to construct
some pathological test cases where this heuristic performed suboptimally,

even though they do not exhibit patterns usually found in practice.

4.2.3 Chordal coloring

Another heuristic graph coloring algorithm is Chordal coloring. Chordal
coloring is optimal for a specific subset of all graphs called chordal graphs
and sub-optimal for other graphs. The main idea of chordal coloring is
to construct a special ordering of vertices known as perfect elimination
ordering (PEO) and to run greedy coloring algorithm on that order.

A chordal graph is one in which all cycles of four or more vertices have a
chord, which is an edge that is not part of the cycle but connects two vertices
of the cycle. In other words, every induced cycle in the graph should have
exactly three vertices. Chordal graphs are a subset of the perfect graphs.

This algorithm was chosen with false assumption that IGs for static data,

like IGs of programs in strict SSA form, are chordal [4]. Later, however,
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it was proven to be able to find quite close to optimal colorings for graphs
produced by some languages [18]. We have reasons to believe that IGs
where for each state of a variable exists a separate vertex in the graph (like
in IGs for strict SSA-formed programs) will be chordal.

In our implementation, the chordal coloring algorithm consists of the

following parts:
1. (optional) graph "chordalization”
2. clique elimination
3. coloring the graph
4. coloring the previously eliminated vertices
5. permuting the colors to fit into memory constraints

We will describe each part, estimate their running time and outline weak

points if such are present.

Graph chordalization Also known as minimal triangulation of a graph,
this step guarantees that other steps of algorithm will be dealing with
chordal graph and thus coloring will be optimal on the new graph. It would
also allow us to easily estimate penalty acquired due to clique elimination
and heuristic coloring of the eliminated vertices, as these steps also assume
that the input graph is chordal.

Algorithm used to find minimal triangulation is called MCS-M, its cor-
rectness was proven, and its running time was estimated in [14]. In our
implementation the MCS-M algorithm has O(N - M -log N) running time,
using Dijkstra-like approach to find maximum weight of a vertex occurring
along the way from u to v for all (u,v) in E, which is required in MCS-M
to construct a minimal elimination ordering.

However, adding minimal triangulation step to chordal coloring algo-
rithm improved the average quality of coloring very insignificantly, but in

exchange it increased the average running time of an algorithm by more
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than 4 times, being the most time-consuming step in chordal coloring al-
gorithm. Therefore, it was decided to leave this step optional until further

investigation.

Clique elimination From this moment on, we will assume that the input
graph is chordal for all chordal coloring steps, starting from this one. If it
is "more or less chordal”, then the results won’t differ much from optimal;
if it is "very much not chordal”’, we will apply chordalization beforehand.

Chromatic number of chordal graphs equals to the size of largest clique,
since they are perfect. Therefore, one possible way to decrease chromatic
number of chordal graph (thus allowing the data this graph represents to fit
into existing memory banks) is to eliminate all cliques of size bigger than
the number of available colors. We can find such cliques in linear time by
the property of PEQO, following directly from its definition: for all vertices v;
in PEO, a sub-graph formed from vertices Neighborhood(v;) N{vy, va, ..., v; }
is complete.

The only question is: how do we select vertices to eliminate? Currently
we use heuristic based on the sum of weights of edges incident to the ver-
tex divided by number of colors. The higher it is, the higher the cost to
eliminate it.

The next step, graph coloring, will be dealing with graph whose cliques
have been reduced to have y(G) = w(G). In following steps, however, the

previously eliminated vertices will be returned to the graph.

Coloring the graph At this step we have a chordal graph, which chro-
matic number is guaranteed to be less than or equal to the number of
available colors

By constructing PEO and passing it in reversed order to greedy color-
ing algorithm, we will obtain optimal coloring of a graph reduced on the

previous step.

Coloring the previously eliminated vertices After we’'ve optimally

colored vertices we could color using no more than the number of colors
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available, we need to color the rest of the graph.

Like clique elimination, this step is done in heuristics fashion: for each
yet uncolored vertex v, we explore its neighborhood, and for each color &
we find out what penalty would v introduce if it were colored with k. We
find such k so that v would introduce the minimum penalty possible; color

v with k, and move to the next uncolored vertex.

Permuting the colors to fit into memory constraints The previ-
ous steps searched for the optimal graph coloring. Here we transform this
coloring so that it would fit into the given memory constraints.

Currently, we do it by permuting colors: for each color ¢ from 1 to k,
we check if we would fit into memories if we substituted it with some other
color. Thus, running time is O(k*), which is tolerable as there are usually
not that many independent memories present on a real hardware.

However, the permutation algorithm itself introduces a bottleneck for
coloring, because of its last position in algorithms chain, where it accepts the
result of previous steps unable to affect their output. This is a serious issue
now, and we are willing to find another way to check memory constraints in
chordal coloring. Constraints checking in exhaustive coloring is integrated
with coloring search, which allows the colorer to skip the checks for colorings
that does not fit into the memory. Ideally, we want this kind of integration

for constraints checking in chordal coloring algorithm as well.
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5 Evaluation

Implemented solution was evaluated on the number of sample tests as
well as a real-life application that implements an algorithm for detecting
objects in an image using a neural network trained using the CIFAR-10
data set.

The quality of the assignment was measured in several ways. When the
source code for the original program was available, we used the number of
CPU cycles spent executing it with specific data assignment as a metric.
The tests were run on the processor in DesignWare ARC EM DSP Family.
The number of CPU cycles was measured using supplied cycle-accurate
simulator and the results were compared against some base data mapping
(usually when all data resides in the single generic memory).

In other cases, such as randomly generated Interference Graphs, instead
of comparing application performance we calculated the mapping’s penalty
metric and compared it between implemented algorithms. The penalty of
the mapping is the cumulative cost of all edges between interfering vertices,
that is vertices assigned to different memories.

The quality of the algorithms was tested on several memory configura-

tions:

1. generic memory with small load penalty and one averagely sized mem-

ory bank
2. generic memory with big load penalty and three small memory banks

3. generic memory with small penalty and three memory banks of un-

limited size

4. generic memory with small penalty and four memory banks of unlim-

ited size
5. generic memory with average penalty and two big memory banks

For each memory configuration we collected the penalty difference of each

algorithm with the optimal coloring found by the exhaustive search and
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Figure 5: Total normalized penalty for different memory configurations
(lower is better)

divided it by the maximum total penalty among tested algorithms. The
summary results are shown on figure 5, where the lower the value is the
better an algorithm performed for the given memory configuration. In this
and the following figures exhaustive is an exhaustive branch and bound
algorithm, o0 is a base greedy algorithm, and g0 is a greedy algorithm with
applied heuristics.

g0-h is a special version of g0 coloring algorithm that we come up with
after measuring coloring quality on randomly generated graphs. Regular
coloring algorithms do not take into account the usage of the variable out-
side interference edges, so they might produce suboptimal coloring when
there are vertices with high usage (weight) and memory configuration in-
cludes memory with a noticeable load penalty.

One such example is the fifth configuration. For this memory configura-
tion figure 6 shows the penalty results of algorithms on randomly generated
Interference Graphs while fig. 7 shows the results for graphs based on
real-life programs. Figure 6 shows that g0 performed especially badly for

randomly generated tests number 12 and 13. These were the tests with an
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unusual pattern of high usage of individual vertices. To better handle such
graphs with modified g0 algorithm by adding special auxiliary vertex for
each vertex with non-zero usage.

While addition of clever heuristics can noticeably improve the coloring
quality, greedy algorithms still often lose to the optimal result of the ex-
haustive branch and bound algorithm. This is especially true for the cases
where graph has a chromatic number significantly higher than the number
of available memory banks. However, the time required to color the Inter-
ference Graph exhaustively grows quickly with the number of vertices and
edges of the graph as shown on fig. 8 which makes it impractical for all
but simple programs. Greedy algorithms, on the other hand, do not exhibit
such problem and all execute in the fraction of the second. This allows to
even apply all implemented greedy algorithms (like g0, g0-h and chordal)
and choose the best result among them with no noticeable speed hit.

Finally, we took an real word application that implemented an algorithm
for detecting objects in an image using a neural network trained using the
CIFAR-10 data set and generated all possible data mappings for it, i.e.
for each global variable used in the program we considered all possible

memories available on the target ARC EM processor that are close to the
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fifth memory configuration described above. We then compiled the program
with each produced data mapping and measured the cycle counts using the
cycle-accurate simulator. The results can be seen on fig. 9, which shows the
speed up of each possible data mapping relative to the slowest one ordered
from slowest to the fastest. It demonstrates that choosing the right data
mapping is very important as it can lead to the performance difference up
to the factor of 16 or more. For this application both the chordal and g0

algorithms were able to find the optimal data mapping.
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Conclusion

In this work we achieved the following results:

e existing approaches to similar problems were reviewed and compared

as well as the algorithms used in them;

e a solution architecture that provides flexibility in the choice of data

assignment algorithm was designed;

e a set of automation tools following the proposed design was imple-
mented with the help of the LLVM framework;

e the developed solution was evaluated on a number of test programs,
including those implementing an algorithm for detecting objects in an

image using a neural network trained using the CIFAR-10 data set.

Using the developed solution, one can quickly find the optimal memory
assignment for the given program and memory configuration as well as
choose the best suited memory configuration for the given task from the set
of available configurations.

Furthermore, the chosen design allows to easily implement and test new
ideas for the data assignment algorithms. We have implemented and evalu-
ated several such algorithms, including slow but precise exhaustive branch-
and-bound algorithm, fast greedy coloring algorithm based on heuristics
and fast coloring algorithm based on the idea of graph’s chordality.

There are several directions for future research and development.

One area to improve is the quality of the generated Interference Graph.
Currently, it depends on the quality of the pointer analysis which is rather
basic. For example, it does not consider the probability of the branches
taken and does not handle recursion. There are ways to improve on it by
using more sophisticated pointer analysis algorithms such as those presented
in the [7] and [10]. Another approach is to delegate program’s data flow
analysis to the appropriate libraries, such as [27].

Other direction for further improvement is the data mapping algorithms

themselves. Apart from exhaustive branch-and-bound, the current algo-
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rithms are all based on the idea of coloring the graph in some specific order.
However, it is possible to use different approaches to the problem of data
assignment such as ILP, Genetic Programming and PBQP [6]. Due to the
fact that in the end it all comes down to the mapping of data to memory
banks, all these approaches can still be implemented in the terms of graph

coloring interface used by Allocator.
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