
1

Good Technology Makes the Difficult Task Easy
Andrey Terekhov

Saint-Petersburg State University
Russia, Saint-Petersburg,

Universitetsky pr. 28
+78124287109

ant@math.spbu.ru

Abstract
A new language for chip design is presented. The main

advantages of the language are explicit conveyer and parallel

features fully controlled by the author of chip design. Non

trivial industrial example is under discussion. There are run-

time estimations and comparison with traditional

programming in C.

Keywords

Hardware design, CoDesign, VHDL, Verilog, pipeline

1. Introduction
It is well known that new technologies could intensify the

appearance of new, previously unknown methods of

calculation, solutions of equations and other complex

problems.

There are many examples where the existence or the absence

of a particular technology changes the situation dramatically.

Let's start with the most familiar to us. The emergence of

high-level programming languages Fortran, Algol 60, Cobol

and other in 50-60th years led to increased programmers’

productivity, but would not be possible without the

appearance of the source code analysis technology,

optimization, code generation and other compiler techniques.

Another example – it’s well known that if one implements the

microprogram to perform some "time-consuming" function,

one can reduce computation time in 10-20 times. All

computers IMB/370 which have been also produced in the

Soviet Union, had the opportunity of dynamic

microprogramming, but nobody used this opportunity, as it

was hard work to write firmware for mainframe even though

everyone knew that it can reduce calculation time. In the mid-

80s a member of our System programming laboratory of the

Faculty of Mathematics and Mechanics – Nikolay Fominykh

invented a solution how to create microprogramms in high

level languages [1] and, as if by magic, the problem of a very

complex turned into a problem which we did not even will to

accept as a thesis - it became the task of the student-level

investigation work on 3rd-4th courses.

Exactly the same thing is happening now with graphical

programming languages. It is difficult to push the designer to

use only standard UML, it is hard work even to correctly

understand where and which of 13 types of UML diagrams to

be used. So to do a good project (not only “images for bosses”

but the project, which will automatically be converted into an

executable computer program) - is a very difficult job. And

here a way out eventually found - programmers began to

create and use languages for each specific domain (Domain

Specific Languages, DSL). Again, it was found that very

difficult tasks are converted into common ones using well-

chosen DSL for each subject area.

It is clear that it is very expensive to develop image diagram

editors, repositories, code generators, debugging tools, etc. for

each DSL. And here there was a solution – metatechnologies -

technologies that are able to automatically generate the

necessary technology for DSL from a set of not too complex

formal descriptions [2].

2. Problem statement

This article focuses on the process of chip design. Here (we'll

talk about flexible chips FPGA - Field Programmable Gate

Array) chip algorithm is fundamentally different from those of

traditional algorithms that programmers write every day in C

or similar languages. It is believed that the time advantage of

using programmable chip is achieved by the use of

parallelism. 100-200 activities and processes can run in the

chip at the same time, and thereby greatly benefit in execution

time compared to traditional programming. But our

experience has shown that the main gain is achieved not

through a direct parallelism, but mainly due to pipelining.

Many actions can not be performed in one clock cycle, so they

have to perform for several consecutive cycles. If they use

different devices, it is always advantageous to arrange the so-

called conveyer - a sequence of actions in which the first step

of a piece of accounts performed by a group of devices,

interim results are transferred to another group of devices that

in the next cycle will continue to do so, but the first group of

devices in the next cycle can also take another piece of data,

and to do its job, and the depth of the pipeline can be quite

large. It is common knowledge, and everyone knows it, but

really deep pipelines are very difficult to implement.

Traditional programming languages for the chip design

VHDL and Verilog have no special features for pipelines. A

VHDL programmer should create data communication

through auxiliary registers, to synchronize (if desired portion

of the data did not come, the conveyer must pause, and then,

at the time the right data received, to resume its work). All of

this is so troublesome and difficult, that conventional VHDL

programmers do not create deep pipelines.

The main motive of this report is the appearance on the

market of the product Vivado of Xilinx company [3], which is

advertised as an automatic converter from C language into

VHDL and Verilog. Upon closer inspection reveals that the

real limitations to the input program, which can be converted

to VHDL, are very high - no dynamics, loops and arrays with

dynamically computed bounds. Everything is designed for the

fact that modern large computers with large memory can build

a syntactic parse tree, build control flow graphs and data flow

graphs to make the necessary optimization and when such

graphs are static (fully known at compile time), one can rely

on the use of various optimization mechanisms and, as the

authors of the tool say, by almost automatically obtain decent

VHDL programs. It is still difficult to assess the real

capabilities of the tool, how it is really effective.

It is better to go the other way, that is to give the programmer

comfortable tool of expression and powerful efficient

technology. Then we can solve a much wider class of

problems.

2

3. Non trivial example
Our team has many years of experience on development a

tool for design hardware implementations of complex

applications on the basis of language HaSCoL (Hardware and

Software CoDesign Language) [4, 5, 6, 7, 8]. This language is

a convenient tool for the programmer to explicitly specify

parallelism - a few steps one can write with a separator «|»,

thus the compiler is instructed that they must be carried out in

parallel in a single cycle, and a means of specifying pipeline -

a few steps separated by ";" set the conveyer, the system

provides the auxiliary registers storing intermediate results,

synchronization, the interaction of pipelines, their suspension

and resumption. We believe that languages without explicit

parallelism and explicitly set the pipeline may not be as

effective as the languages in which such actions are

predetermined, and we hope to demonstrate the advantages of

our platform on a real industrial example.

 As the example, we chose the image search in the screen. In

order not to torment the reader the intricacies of the algorithm,

we chose a standard correlation algorithm, assuming that the

screen consists of 512 by 512 pixels, where is necessary to

find an image (frame) of 128 by 128 pixels. It's pretty time

consuming algorithm, but works well. Briefly describe the

nature of the algorithm. Viewing the initial screen, each piece

of screen (size of 128x128) must be normalized, and then the

inner product of the resulting normalized values of pixels with

a normalized value of the frame is computed. Maximum of

these inner products indicates the fragment found.

Define screen size as M*N (in this example M=N=512). We

must find an etalon in this screen – the array of pixels m*n (in

this example m=n=128).

Normalization is performed by the following formula:

 ̅

√∑ ∑ (̅)

where ̅ is average from all screen areas . The sum plays an

important role in the proposed calculation scheme

∑∑ ̅

It is easy to show ∑ ∑ ̅ ∑∑
 ̅

Let’s estimate the complexity of the algorithm. Fragments of

the screen to be normalized and compared with the etalon will

be (512-128) * (512-128) = 384 * 384.

In each fragment to find the sum of the elements to calculate

the average and the sum of their squares, i.e., with 2 * 128 *

128 actions to reduce the number of additions, we apply the

standard for this kind of problems approach when the sums

are stored in rows "accrual basis", there is an array in which

each element is the sum of the previous n elements. Each new

line item is obtained by adding to previous one and

subtracting the previous element that comes n items back. So

to get the sum of all elements of the next fragment we need

only 2*128 operations (add elements of the last column),

instead of 2*128*128.

To calculate the square root of a 32-bit integer, it was possible

to find an algorithm with a cycle of 16 repetitions of 5-7

actions.

For the normalization of the elements and get the inner

product any simplifications are not applied.

Thus, the resulting complexity of the algorithm can be

estimated

384 * 384 * (2 * 128 + 6 * 16 + 10 * 128 * 128) = 384 * 384 *

164192 action.

C program for this algorithm works on MacAir about 30

seconds. At our request, graduate student Stanislav Sartasov

using the system CUDA, applied the GPU, which parallelized

the inner loop of 128 repetitions. He received a counting time

of 0.5 seconds on a good processor with 2 cores.

4. Proposed solution
We now describe the program (main program elements

provided at the end of the report) by using identifiers of its

code in HaSCoL (s, s2, az, etc.). At first, we introduce an

array of a (etalon) and consider the sum of all the pixels and

the sum of squares of pixels

 ∑ ∑

 ∑ ∑

Then we calculate denominator

 √ (

)

 √

and change etalon pixels be normalized values

If is unsigned 8 bits, then ∑ ∑

 request 22 bits,

request 16 bits, and ∑ ∑

 - 30 bits (m=n=128).

Similar calculations are performed on all the m*n rectangles

of the screen, the upper left corner is defined be the indices k

and l, in each of these rectangles zpk+i,l+j is calculated,

similarly to apij where k=0..M-m+1, l=0..N-n+1.

The total value of the estimated function for the rectangle k, l

 ∑ ∑

We are interested in the maximum of this function and the

indices k and l, where it was achieved.

Sum S collected by rows in the array

s [m, N] of 15 bits

the sum of squares of lines going in the array

s2 [m, N] of 23 bits.

All crystal arrays stored in bram (special memory), each of

which allows a maximum of two read operations per cycle.

Let’s start demonstration from a simple example (Listing 1).

In the line m-1 (counts from 0) reached column n-1, so the

first piece formed for counting - a rectangle whose top left

coordinates of k = 0, l = 0. For the sum of all elements of the

rectangle we must add elements in the last column (which

already has the sums of lines). This piece is not the most

critical, so implement it on a lot of hardware resources is not

desirable.

Specially for such occasions, if the author of the program

believes that there is no sense to parallelize some not very

important actions on a large number of chip elements in the

language HaSCoL there are while-statement and a few other

3

similar operators. This is normal loop which is repeated

several times on the same fragment of the apparatus. While

statement inhibits the current conveyer, for example, to

fragment Listing 1, the algorithm issued by one intermediate

result every clock, but since the beginning of operator while

will produce a result in 128 clock cycles. But the cycle being

once started, will run to the end, without the need for

additional information.

Due to hardware limitations result of reading bram memory

can not be used in the same clock cycle. It turns out that the

complexity of the loop is 128 * 2 cycles. Proceed differently:

with each repetition cycle increase counter and start

subprocess sum1, with the launch of a subprocess and

execution of his first action within one clock cycle.

Subprocess sum1 (Listing 4) starts the conveyer of 2 stages.

Thus the complexity of 128 * 2 is replaced by 128 cycles!

Next is the square root (Listing 2). This while loop runs for 16

repetitions each time when the previous segment finishes its

work. This is also the conveyer - while the square root of the

result of the first conveyer element is counting, in parallel

with it the first loop is calculating for the second element and

so on. Thus, the computation time of this section may be

neglected.

Now let's discuss the most interesting and time-consuming

program fragment (Listing 3 and Listing 5). Here, we use

macro generator realized many years ago, by our researcher

Anton Moskal [9]. The idea is to replace the linear addition of

128 elements of the column by logarithmic addition in 7

iterations. But even these seven iterations we arrange as the

conveyer in the form: in step 1 add together the adjacent

conveyer elements in step 2 - amounts pairs, fours later and so

on. We need 127 summators (64 +32 +16 + ...), but the chips

are now more powerful, so it's not a problem.

Thus, in the Listing 3 a cycle of 128 repetitions is described,

the loop body (Listing 5) takes exactly one clock, with 128

running parallel processes with the working depth of the

conveyer equal 10 (I just counted the number of characters ";"

in the generated program).

Thus, the body of the outer loop with 384 * 384 iterations has

3 parts - 128, 96 and 128 clocks, arranged in a pipeline. They

practically run in parallel with the exception of a small "tail"

of the plot, running after the completion of the outer loop.

This means that the complexity of the body of the outer loop

is approximately 128 clocks, and the complexity of the

program 384 * 384 * 128 plus a small constant which is more

than 1200 times less than the original version!

In our view, Xilinx Vivado can not create so effective

program, because there is no conveyer driven by the

programmer.

5. Conclusion
This program in HaSCoL was written by me during one week,

plus a couple of working days spent on the coordination of

interfaces, improved code generator for VHDL, bug fixes, etc.

It is even difficult to imagine how long it takes for an engineer

who owns VHDL, to write a similar program with the same

deep pipelines.

We have conducted several industrial experiments. For

example, the program for calculation the signatures of

computer stereo vision in the language HaSCoL was written

just during 1 week, and an engineer working full time, wrote

in VHDL the same program more than six months. In

HaSCoL already implemented neurocomputer containing 500

neurons in a single crystal VIRTEX VI, Macroblaze processor

and several other large systems. This allows us to conclude

that there are really big opportunities for technology.

Listing 1

if pk >= m1 && pl >=n1

then

ii=0;

while ii < m

do

 inform (sum1(ii,pl)) | ii:=ii + 1

done;

skip;

Listing 2

x:=ext(zz - (((zv >* zv) >> sh){0:29} :uint(30)), 32) | y:=0;

j:= (30 :uint(5));

while j >= 0

do

 zzz:=((ext(y,32)<<2)+1)<<j | y:=y << 1;

 if x >=zzz

 then y:=y + 1 | x:=x – zzz

 fi;

 j:=j-2

done;

if y == 0 then y:=1 fi;

Listing 3

while ii < m

 do

 inform(sum2(ext(ii, 10), iii, y, flagend, kk, ll)) | ii:=ii + 1

 done

Listing 4

sum1(i,l)

{

sil = s[i][l] | s2il = s2[i][l];

zv:=if i == 0 then 0 else zv fi + ext(sil,22) |

zz:=if i == 0 then 0 else zz fi + ext(s2il,30)

}

Listing 5

sum2(ii,iii, y, flagend, kk, ll)

{

#define mj 0

#while mj < n

 aij(mj) = a[mj][ii] |

 let imj = iii + mj in

 { zij(mj) = z[if imj >= m then imj - m else imj fi][ii] } |

#if mj == 0

 F2 = (ext(az >* y, 44) :int(44)) |

#endif

#set mj $eval(mj+1)

#endw

skip;

4

6. References
[1] «Using a standard Extensible algorithmic language in

microprogramming», Nikolay Fominykh, Dialog

Microcomputer systems, Moscow, Moscow State University,

1986 (in Russian).

[2] "Architecture of visual modeling environment QReal»,

System Programming, Vol. 4, 2009, A. Terekhov, T. Bryksin,

Y. Litvinov, K. Smirnov, G. Nikandrov, I. Ivanov, E. Takun,

number of pages 26, (in Russian).

[3] Manual:

http://www.xilinx.com/support/documentation/sw_manuals/xi

linx2012_2/ug902-vivado-high-level-synthesis.pdf

[4] "The evolution of our views on CoDesign over the past 15

years," a personal website:

http://www.math.spbu.ru/user/ant/History_Evol_CODESIGN.

pdf, (in Russian).

[5] "Using Hardware-Software Codesign Language to

implement CANSCID", Oleg Medvedev, Ilya Posov, Formal

Methods and Models for Codesign (MEMOCODE), 2010 8th

IEEE/ACM International Conference on, pp 85 -88,

http://oops.math.spbu.ru/dours/HaSCoL/MedvedevPosovME

MOCODE2010.pdf

[6] "Accelerating multiple alignment on FPGA with a high-

level hardware description language", Oleg Medvedev,

Central Eastern European Software Engineering Conference

in Russia, 2011,

http://oops.math.spbu.ru/dours/HaSCoL/SECR11.pdf

[7] "Overview of high-level language development equipment

HaSCoL the example of a clone processor Xilinx

Microblaze", Oleg Medvedev, the Second Scientific

Conference of Young Specialists "Start the Future", 2011, pp.

231-234, http://oops.math.spbu.ru/dours/HaSCoL/KBSM.pdf

[8] "Hardware Description Language Based on Message

Passing and Implicit Pipelining", Dmitri Boulytchev, Oleg

Medvedev, EWDT 2009,

http://oops.math.spbu.ru/dours/HaSCoL/EWDT09.pdf

[9] "Presentation of communication source and target texts in

the automatic generation of program texts," A. Moskal,

Automated software reengineering, St. Petersburg, St.

Petersburg University,2000, (in Russian).

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.math.spbu.ru/user/ant/History_Evol_CODESIGN.pdf
http://www.math.spbu.ru/user/ant/History_Evol_CODESIGN.pdf
http://oops.math.spbu.ru/dours/HaSCoL/MedvedevPosovMEMOCODE2010.pdf
http://oops.math.spbu.ru/dours/HaSCoL/MedvedevPosovMEMOCODE2010.pdf
http://oops.math.spbu.ru/dours/HaSCoL/SECR11.pdf
http://oops.math.spbu.ru/dours/HaSCoL/KBSM.pdf
http://oops.math.spbu.ru/dours/HaSCoL/EWDT09.pdf

