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Abstract 
A new language for chip design is presented. The main 

advantages of the language are explicit conveyer and parallel 

features fully controlled by the author of chip design. Non 

trivial industrial example is under discussion. There are run-

time estimations and comparison with traditional 

programming in C. 
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1. Introduction 
It is well known that new technologies could intensify the 

appearance of new, previously unknown methods of 

calculation, solutions of equations and other complex 

problems. 

There are many examples where the existence or the absence 

of a particular technology changes the situation dramatically. 

Let's start with the most familiar to us. The emergence of 

high-level programming languages Fortran, Algol 60, Cobol 

and other in 50-60th years led to increased programmers’ 

productivity, but would not be possible without the 

appearance of the source code analysis technology, 

optimization, code generation and other compiler techniques.  

Another example – it’s well known that if one implements the 

microprogram to perform some "time-consuming" function, 

one can reduce computation time in 10-20 times. All 

computers IMB/370 which have been also produced in the 

Soviet Union, had the opportunity of dynamic 

microprogramming, but nobody used this opportunity, as it 

was hard work to write firmware for mainframe even though 

everyone knew that it can reduce calculation time. In the mid-

80s a member of our System programming laboratory of the 

Faculty of Mathematics and Mechanics – Nikolay Fominykh 

invented a solution how to create microprogramms in high 

level languages [1] and, as if by magic, the problem of a very 

complex turned into a problem which we did not even will to 

accept as a thesis - it became the task of the student-level 

investigation work on 3rd-4th courses. 

Exactly the same thing is happening now with graphical 

programming languages. It is difficult to push  the designer to 

use only standard UML, it is hard work even to correctly 

understand where and which of 13 types of UML diagrams to 

be used. So to do a good project (not only “images for bosses” 

but the project, which will automatically be converted into an 

executable computer program) - is a very difficult job. And 

here a way out eventually found - programmers began to 

create and use languages for each specific domain (Domain 

Specific Languages, DSL). Again, it was found that very 

difficult tasks are converted into common ones using well-

chosen DSL for each subject area. 

It is clear that it is very expensive to develop image diagram 

editors, repositories, code generators, debugging tools, etc. for 

each DSL. And here there was a solution – metatechnologies - 

technologies that are able to automatically generate the 

necessary technology for DSL from a set of not too complex 

formal descriptions [2].  

2. Problem statement 

This article focuses on the process of chip design. Here (we'll 

talk about flexible chips FPGA - Field Programmable Gate 

Array) chip algorithm is fundamentally different from those of 

traditional algorithms that programmers write every day in C 

or similar languages. It is believed that the time advantage of 

using programmable chip is achieved by the use of 

parallelism. 100-200 activities and processes can run in the 

chip at the same time, and thereby greatly benefit in execution 

time compared to traditional programming. But our 

experience has shown that the main gain is achieved not 

through a direct parallelism, but mainly due to pipelining. 

Many actions can not be performed in one clock cycle, so they 

have to perform for several consecutive cycles. If they use 

different devices, it is always advantageous to arrange the so-

called conveyer - a sequence of actions in which the first step 

of a piece of accounts performed by a group of devices, 

interim results are transferred to another group of devices that 

in the next cycle will continue to do so, but the first group of 

devices in the next cycle can also take another piece of data, 

and to do its job, and the depth of the pipeline can be quite 

large. It is common knowledge, and everyone knows it, but 

really deep pipelines are very difficult to implement. 

Traditional programming languages for the chip design 

VHDL and Verilog have no special features for pipelines. A 

VHDL programmer should create data communication 

through auxiliary registers, to synchronize (if desired portion 

of the data did not come, the conveyer must pause, and then, 

at the time the right data received, to resume its work). All of 

this is so troublesome and difficult, that conventional VHDL 

programmers do not create deep pipelines.  

The main motive of this report is the appearance on the 

market of the product Vivado of Xilinx company [3], which is 

advertised as an automatic converter from C language into 

VHDL and Verilog. Upon closer inspection reveals that the 

real limitations to the input program, which can be converted 

to VHDL, are very high - no dynamics, loops and arrays with 

dynamically computed bounds. Everything is designed for the 

fact that modern large computers with large memory can build 

a syntactic parse tree, build control flow graphs and data flow 

graphs to make the necessary optimization and when such 

graphs are static (fully known at compile time), one can rely 

on the use of various optimization mechanisms and, as the 

authors of the tool say, by almost automatically obtain decent 

VHDL programs. It is still difficult to assess the real 

capabilities of the tool, how it is really effective.  

It is better to go the other way, that is to give the programmer  

comfortable tool of expression and powerful efficient 

technology. Then we can solve a much wider class of 

problems. 
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3. Non trivial example  
Our team has many years  of experience on development a 

tool for design hardware implementations of complex 

applications on the basis of language HaSCoL (Hardware and 

Software CoDesign Language) [4, 5, 6, 7, 8]. This language is 

a convenient tool for the programmer to explicitly specify 

parallelism - a few steps one can write with a separator «|», 

thus the compiler is instructed that they must be carried out in 

parallel in a single cycle, and a means of specifying pipeline - 

a few steps separated by ";" set the conveyer, the system 

provides the auxiliary registers storing intermediate results, 

synchronization, the interaction of pipelines, their suspension 

and resumption. We believe that languages without explicit 

parallelism and explicitly set the pipeline may not be as 

effective as the languages in which such actions are 

predetermined, and we hope to demonstrate the advantages of 

our platform on a real industrial example. 

 As the example, we chose the image search in the screen. In 

order not to torment the reader the intricacies of the algorithm, 

we chose a standard correlation algorithm, assuming that the 

screen consists of 512 by 512 pixels, where is necessary to 

find an image (frame) of 128 by 128 pixels. It's pretty time 

consuming algorithm, but works well. Briefly describe the 

nature of the algorithm. Viewing the initial screen, each piece 

of screen (size of 128x128) must be normalized, and then the 

inner product of the resulting normalized values of pixels with 

a normalized value of the frame is computed. Maximum of 

these inner products indicates the fragment found. 

Define screen size as M*N (in this example M=N=512). We 

must find an etalon in this screen – the array of pixels m*n (in 

this example m=n=128).  

Normalization is performed by the following formula: 
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where  ̅ is average from all screen areas    . The sum plays an 

important role in the proposed calculation scheme  

∑∑      ̅  

  

 

It is easy to show ∑ ∑       ̅     ∑∑   
       ̅  

Let’s estimate the complexity of the algorithm. Fragments of 

the screen to be normalized and compared with the etalon will 

be (512-128) * (512-128) = 384 * 384. 

In each fragment to find the sum of the elements to calculate 

the average and the sum of their squares, i.e., with 2 * 128 * 

128 actions to reduce the number of additions, we apply the 

standard for this kind of problems approach when the sums 

are stored in rows "accrual basis", there is an array in which 

each element is the sum of the previous n elements. Each new 

line item is obtained by adding to previous one and 

subtracting the previous element that comes n items back. So 

to get the sum of all elements of the next fragment we need 

only  2*128 operations (add elements of the last column), 

instead of 2*128*128. 

To calculate the square root of a 32-bit integer, it was possible 

to find an algorithm with a cycle of 16 repetitions of 5-7 

actions. 

For the normalization of the elements and get the inner 

product any simplifications are not applied.  

Thus, the resulting complexity of the algorithm can be 

estimated 

384 * 384 * (2 * 128 + 6 * 16 + 10 * 128 * 128) = 384 * 384 * 

164192 action. 

C program for this algorithm works on MacAir about 30 

seconds. At our request, graduate student Stanislav Sartasov 

using the system CUDA, applied the GPU, which parallelized 

the inner loop of 128 repetitions. He received a counting time 

of 0.5 seconds on a good processor with 2 cores. 

4. Proposed solution 
We now describe the program (main program elements 

provided at the end of the report) by using identifiers of its 

code in HaSCoL (s, s2, az, etc.). At first, we introduce an 

array of a (etalon) and consider the sum of all the pixels and 

the sum of squares of pixels 

   ∑ ∑   

   

   

   

   

      ∑ ∑   
 

   

   

   

   

 

Then we calculate denominator 
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and change etalon pixels be normalized values 

     
    

  
   

  
 

          

      
 

If     is unsigned 8 bits, then ∑ ∑    
   
   

   
    request 22 bits,    

  

request  16 bits, and  ∑ ∑    
 

 

   
   

   
    - 30 bits (m=n=128). 

Similar calculations are performed on all the m*n rectangles 

of the screen, the upper left corner is defined be the indices k 

and l, in each of these rectangles zpk+i,l+j is calculated, 

similarly to apij where k=0..M-m+1, l=0..N-n+1. 

The total value of the estimated function for the rectangle k, l 

    ∑ ∑               

   

   

   

   

 

We are interested in the maximum of this function and the 

indices k and l, where it was achieved. 

Sum S collected by rows in the array 

s [m, N] of 15 bits 

the sum of squares of lines going in the array 

s2 [m, N] of 23 bits. 

All crystal arrays stored in bram (special memory), each of 

which allows a maximum of two read operations per cycle. 

Let’s start demonstration from a simple example (Listing 1). 

In the line m-1 (counts from 0) reached column n-1, so the 

first piece formed for counting - a rectangle whose top left 

coordinates of  k = 0, l = 0. For the sum of all elements of the 

rectangle we must add elements in the last column (which 

already has the sums of lines). This piece is not the most 

critical, so implement it on a lot of hardware resources is not 

desirable.  

Specially for such occasions, if the author of the program 

believes that there is no sense to parallelize some not very 

important actions on a large number of chip elements in the 

language HaSCoL there are while-statement and a few other 
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similar operators. This is normal loop which is repeated 

several times on the same fragment of the apparatus. While 

statement inhibits the current conveyer, for example, to 

fragment Listing 1, the algorithm issued by one intermediate 

result every clock, but since the beginning of operator while 

will produce a result in 128 clock cycles. But the cycle being 

once started, will run to the end, without the need for 

additional information. 

Due to hardware limitations result of reading bram memory 

can not be used in the same clock cycle. It turns out that the 

complexity of the loop is 128 * 2 cycles. Proceed differently: 

with each repetition cycle increase counter and start 

subprocess sum1, with the launch of a subprocess and 

execution of his first action within one clock cycle. 

Subprocess sum1 (Listing 4) starts the conveyer of 2 stages. 

Thus the complexity of 128 * 2 is replaced by 128 cycles! 

Next is the square root (Listing 2). This while loop runs for 16 

repetitions each time when the previous segment finishes its 

work. This is also the conveyer - while the square root of the 

result of the first conveyer element is counting, in parallel 

with it the first loop is calculating for the second element and 

so on. Thus, the computation time of this section may be 

neglected. 

Now let's discuss the most interesting and time-consuming 

program fragment (Listing 3 and Listing 5). Here, we use 

macro generator realized many years ago, by our researcher 

Anton Moskal [9]. The idea is to replace the linear addition of 

128 elements of the column by logarithmic addition in 7 

iterations. But even these seven iterations we arrange as the 

conveyer in the form: in step 1 add together the adjacent 

conveyer elements in step 2 - amounts pairs, fours later and so 

on. We need 127 summators (64 +32 +16 + ...), but the chips 

are now more powerful, so it's not a problem. 

Thus, in the Listing 3 a cycle of 128 repetitions is described, 

the loop body (Listing 5) takes exactly one clock, with 128 

running parallel processes with the working depth of the 

conveyer equal 10 (I just counted the number of characters ";" 

in the generated program). 

Thus, the body of the outer loop with 384 * 384 iterations has 

3 parts - 128, 96 and 128 clocks, arranged in a pipeline. They 

practically run in parallel with the exception of a small "tail" 

of the plot, running after the completion of the outer loop. 

This means that the complexity of the body of the outer loop 

is approximately 128 clocks, and the complexity of the 

program 384 * 384 * 128 plus a small constant which is more 

than 1200 times less than the original version! 

In our view, Xilinx Vivado can not create so effective 

program, because there is no conveyer driven by the 

programmer.  

5. Conclusion 
This program in HaSCoL was written by me during one week, 

plus a couple of working days spent on the coordination of 

interfaces, improved code generator for VHDL, bug fixes, etc. 

It is even difficult to imagine how long it takes for an engineer 

who owns VHDL, to write a similar program with the same 

deep pipelines. 

We have conducted several industrial experiments. For 

example, the program for calculation the signatures of 

computer stereo vision in the language HaSCoL was written 

just during 1 week, and an engineer working full time, wrote 

in VHDL the same program more than six months. In 

HaSCoL already implemented neurocomputer containing 500 

neurons in a single crystal VIRTEX VI, Macroblaze processor 

and several other large systems. This allows us to conclude 

that there are really big opportunities for technology.  

 

 

Listing 1 

if pk >= m1 && pl >=n1 

then 

ii=0; 

while ii < m 

do 

 inform (sum1(ii,pl)) | ii:=ii + 1 

done; 

skip; 

Listing 2 

x:=ext(zz - (((zv >* zv) >> sh){0:29} :uint(30)), 32) | y:=0; 

j:= (30 :uint(5)); 

while j >= 0 

do 

 zzz:=((ext(y,32)<<2)+1)<<j | y:=y << 1; 

 if x >=zzz 

 then y:=y + 1 | x:=x – zzz 

 fi; 

 j:=j-2 

done; 

if y == 0 then y:=1 fi; 

Listing 3 

while ii < m 

 do 

  inform(sum2(ext(ii, 10), iii, y, flagend, kk, ll)) | ii:=ii + 1 

 done 

Listing 4 

sum1(i,l) 

{ 

sil = s[i][l] | s2il = s2[i][l]; 

zv:=if i == 0 then 0 else zv fi + ext(sil,22) | 

zz:=if i == 0 then 0 else zz fi + ext(s2il,30) 

} 

Listing 5 

sum2(ii,iii, y, flagend, kk, ll) 

{  

#define mj 0 

#while mj < n 

  aij(mj) = a[mj][ii] | 

 let imj = iii + mj in 

 { zij(mj) = z[if imj >= m then imj - m else imj fi][ii] } | 

#if mj == 0 

  F2 = (ext(az >* y, 44) :int(44)) | 

#endif 

#set mj $eval(mj+1) 

#endw 

skip; 
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