
Ubiq Mobile + QReal – a technology for

development of distributed mobile services

Timofey Bryksin, Yuri Litvinov, Valentin Onossovski, Andrey N. Terekhov

St.-Petersburg State University, Faculty of Mathematics and Mechanics

Department of Software Engineering

198504, Universitetsky av.,28, St.-Petersburg, Russia

timofey.bryksin@gmail.com, yurii.litvinov@gmail.com, v.onossovski@ubiqmobile.com,

ant@tercom.ru

Abstract

The integrated technology for quick and efficient development of distributed mobile services is

described in the paper. The technology includes two main components that are tightly integrated:

Ubiq Mobile platform that provides development tools and execution environment for efficient and

robust multi-platform mobile services, and QReal – a visual modeling technology that lets to define

various domain-specific graphical languages (DSLs) and use them for rapid development of

distributed mobile applications in different subject areas.

Index Terms: Distributes systems, Mobile services, Visual modeling, Domain-specific languages,

Software development technologies.

I. INTRODUCTION

Among the myriad of mobile applications taking information from the Internet

consisting of hundreds of thousands of programs and continually expanding, we are

interested in those programs that are actually mobile components of larger distributed

systems, in contrast with the others that can be characterized as ―applications for mobile

devices, taking information from the Internet from time to time‖. Let’s call such systems

distributed mobile services, if they are

 Designed for large number of mobile users including those who work

simultaneously;

 Designed for working in continuous mode and have complex server-side

business logic, including functionality that doesn’t depend on current users’

activities and can work without active users’ sessions;

 Potentially multiplatform, i.e., support various mobile platforms and types of

mobile devices.

The examples of distributed mobile services are multi-user online games for mobile

devices (like Tic-tac-toe or Sea Battle from one mobile phone to another), systems of

mobile access to various automation systems (like video surveillance), mobile interfaces

to distributed business applications etc. Such sorts of applications as, for instance, mobile

versions of information or media websites or ―find you nearest ATM‖ services obviously

don’t belong to this category.

mailto:timofey.bryksin@gmail.com
mailto:yurii.litvinov@gmail.com
mailto:v.onossovski@ubiqmobile.com
mailto:ant@tercom.ru

Most of modern popular technologies for development of mobile applications (like

[1]. [2], [3]) are targeted on development of relatively simple applications and can barely

help in creation of distributed mobile services. The most suitable technology for this

class of applications is still mobile Ajax [4], but it has its own drawbacks and isn’t quite

appropriate for wide practical use in many cases.

We propose an original approach to creation of distributed mobile services based on

two major components. The first component is Ubiq Mobile platform [5] that provides

both programming tools and runtime support for creation of multi-platform distributed

mobile services that are able to work ―always and everywhere‖ on wide range of mobile

devices and in different conditions of mobile connections, including slow and unstable

ones. Another component is QReal visual modeling technology [6] that contains tools for

creation of various graphical domain-specific languages (DSLs) and provides automatic

code generation from these languages into Ubiq Mobile API. The use of domain-specific

modeling (DSM) approach for mobile applications development, according to [7],

dramatically increases programmers’ productivity as well as overall efficiency of the

development process. We believe that the combination of DSM technology (QReal) with

robust and high-efficient runtime support platform (Ubiq Mobile) will provide a

qualitative effect of simplifying and accelerating the development of distributed mobile

services.

II. UBIQ MOBILE PLATFORM

Ubiq Mobile is an original platform for creation of modern distributed mobile services

with rich functionality. The platform is targeted for a wide range of modern mobile

devices – from simple Java phones and low-end smartphones to the advanced hi-end

devices on iOS, Android and Windows Phone platforms.

An important feature of Ubiq Mobile platform is its ability to function normally in

poorly developed mobile infrastructure and mobile networks with relatively low data

transfer (GPRS, EDGE).

The Ubiq Mobile project has been carried out in St.Petersburg State University by the

team of specialists and students for the last 3 years. The strategic goal of the project is to

give a broad range of conventional programmers an ability to create modern distributed

mobile services that can work ―always and everywhere‖ where there is any kind of

mobile connection.

Ubiq Mobile platform is focused on the following major types of distributed mobile

services:

 Interactive information services with complex business logic inside (smart

boards with constantly changed information, displaying information on maps

using Google Maps or similar services, support of push mode initiated by

server side etc.);

 Mobile interfaces for distributed corporate applications and information

systems;

 Tourist information services, information support of events and sports;

 Mobile banking applications;

 Remote interaction with ―intelligent‖ automation systems like video

surveillance, smart house automation etc.;

 Multi-user online games;

 Web 2.0 services, taking information from social networks.

The platform is targeted on creation of mobile distributed services both for business

and for individual programmers and small teams who develop a variety of services for

wide range of public users. No special experience in developing mobile applications is

required for development of services on Ubiq Mobile platform.

The platform in its basic configuration implements terminal architecture – the

majority of applications’ business logic is running on server side, while mobile devices

act as intelligent graphical terminals and interact with the server side via original binary

protocol built over TCP/IP. The use of proprietary protocol instead of one of existing

open protocols, on the one hand, increases closeness of the platform. On the other hand,

it gives many additional opportunities for optimization of graphical data transfer between

server and mobile devices and lets the platform to correctly process mobile connections

breaks and make applications more robust against network instability. For enhanced

mobile devices with rich functionality (like iPhone, Android-based and Windows Phone-

based smartphones), the Ubiq Mobile platform provides an option of integration of

server-side application components with specially developed mobile applications.

The platform provides significant savings of mobile traffic for its services. Typically

the user of Ubiq Mobile distributed service consumes less traffic in comparison with a

process of web surfing through a mobile phone browser during the same period of time.

Low traffic consumption, on the one hand, facilitates the work of services on slow

connections and, on the other hand, reduces overall cost of using Ubiq Mobile services.

Ubiq Mobile services can function correctly in any kind of mobile networks, including

ones with slow and unstable mobile connections. Low traffic consumption allows

applications to function normally even on slow GPRS connections. The platform

includes special tools for adaptive tuning of parameters of data exchange between server

and mobile client depending on connection speed. In particular, compression quality of

transferred fragments of graphic images varies dynamically depending on connection

speed.

 Another subsystem provides correct work of applications in conditions of frequent

connection breaks and reconnections, for example, in a moving subway train. When the

connection breaks, the platform sends a signal to the application, automatically suspends

UI process and saves its state. After that, during some time the mobile client tries to

restore connection and, if successfully reconnects (like in subway train), the UI process is

being automatically resumed from the saved state.

A distributed service is represented in Ubiq Mobile as a set of concurrent processes

that are interacting through mailboxes. Some of them correspond to active mobile users’

sessions while the others implement ―purely server-side‖ logic and permanently exist in

the system during the whole lifetime of the service. Depending on service architecture,

the users’ processes can run either on server or on mobile devices. The permanent

processes are running only on server side.

There are several models of implementation of mobile users’ interfaces in Ubiq

Mobile platform:

 Basic model (B) – an UI process is running on a server with a mobile device as

a remote graphical terminal working with this server through unified thin

client program

 Basic Native model (NB) – a UI process is running on a server, mobile

devices acts as graphical terminal but, in contrast with B option, user interface

is composed from native controls of this concrete device and therefore has

native-like look and feel.

 Native model (N) – one or more user processes (including UI process) are

implemented in client-side program, running on mobile device and specially

developed for this particular service. This program acts as thick client and

interacts with other processes of this service through special API provided by

Ubiq Mobile for specific mobile platform.

The purpose of B model is to provide appropriate quality of graphics and level of

functionality for the majority of supported mobile platforms, including the weakest ones

(like Java phones and low-end smartphones). On this level, most of rendering work is

performed on the server and fragments of rendered images are transferring to the mobile

client in compressed mode.

For advanced mobile platforms with rich functionality (like iOS, Android and

Windows Phone) one can use NB model. In this case UI screen is represented as a tree

consisting of generalized controls. Instead of rendering the tree into final image on server

side (like in B model), fragments of the tree are transferred to the mobile client. On client

side, generalized controls are mapped into appropriate native controls and the whole UI

screen is being rendered on the mobile device.

The N model could be used if the authors of mobile service want to provide fully

native thick client for particular mobile platform. Unlike terminal clients for B and NB

models, such a thick client won’t be universal and will serve only specific mobile service

(or services) on which it is targeted. The use of N model makes sense either for really

mass mobile services or for providing smooth interfaces between existing native mobile

applications and server-side logic on Ubiq Mobile server.

Ubiq Mobile platform provides transparency of services with respect to the UI models

used by different clients. It means that the same service can work at the same time with

Java mobile phone using B model, and with iPhone or Android device – using either NB

or N models. The transparency is provided on the level of developed applications – all

differences are encapsulated inside Ubiq Mobile graphical subsystem that can use

different subsets of protocol for interaction with mobile clients depending on their UI

models.

The Ubiq Mobile server-side SDK is currently working on Microsoft.NET. The

choice of .NET as environment for the platform has been quite arbitrary and was made

mainly due to prevailing development skills in the team at the start of the project. Now

there are plans of development Java version of server SDK to avoid use of third-party

proprietary software.

The Ubiq Mobile platform includes the following components:

 Server-side SDK, that includes server components, API library and debugging

tools. Development of distributed services is assumed to be performed in

Visual Studio.

 A set of unified thin clients for all supported mobile platforms that provide B

and NB models of user interface.

 A set of APIs for interaction between native thick clients with server

processes. Such APIs are implemented for all mobile platforms where Ubiq

Mobile provides N model of user interface.

Various services in Ubiq Mobile can be either hosted on one server or distributed

among different servers. For the access of mobile clients to services, the platform

supports general directory that is replicated among all servers registered in the system. So

if the creators of the new service want to publish it for public access, they can host it

either on their own server or somewhere in the cloud and then register the new server in

Ubiq Mobile directory. Soon after that, the information about all services hosted on this

server will be available for all Ubiq Mobile users.

Unified representation of Ubiq Mobile distributed applications as sets of processes

together with thought-out API helps to make programmers’ work to develop distributed

mobile services significantly easier. However, much more productivity boost could be

gained by use of graphical domain-specific languages (DSL). Using DSLs to create

distributed mobile services allows to

 Considerably increase productivity of developers of mobile services;

 Use different DSL for services, oriented on different domains;

 Broaden and make usage of native thick clients for advanced moble platforms

easier (by automated generation of user processes from DSLs into native code

for selected mobile platform);

 Easily redistribute user processes between client and server transparently to

other pars of the system;

 Simplify creation and support of distributed applications’ template library.

To choose an appropriate tool to create DSL and supporting generators into Ubiq

Mobile platform, a detailed analysis was performed and some popular technologies were

analyzed (both mature industrial and developing projects, [8], [9]). As a result a decision

was made to use QReal metaCASE system, which is being developed by a research

group led by prof. A. Terekhov in St. Petersburg state university for several years now.

This choice was made due to some of QReal’s features described below and, most

importantly, the possibility of fine tuning to meet the requirements of distributed mobile

applications development.

III. QREAL TECHNOLOGY

QReal is a technology and supporting tools, implementing domain-specific modeling

paradigm. Sometimes creation of a new language, oriented on the problem that is being

solved, and solving it with this new language becomes cheaper and faster than solving it

with general-purpose languages. Having adequate tool support, the process of creation of

visual languages and appropriate tools like code generators can become cheap enough to

make this approach economically reasonable to apply not only in large projects.

QReal metaCASE system consists of tools for rapid development of visual languages,

graphical editors for them, code generators, repository, version control, visual debugging

and other tools developers are used to have. Besides, QReal offers an environment to

work with graphical languages. All created visual editors are built as dynamical libraries,

which gives them unified user interface and all QReal’s features described above.

A technology like this could be applied in a wide range of projects starting from small

companies that are developing a lot of similar applications (specific types of mobile

applications, data-oriented information systems etc.) and up to large companies that want

to have their own programming tools, specialized on particular project. In addition, visual

DSLs often could be easily used even by non-professional programmers due to their

expressiveness.

There are some already existing metaCASE tools on a market. Possibly the most

successful of them is MetaEdit+[7], developed by MetaCase company and based on

results of a research group of Jyvaskyla University. It allows to quickly create a DSL and

use it with stand-alone visual editor. For example, in MetaEdit+ a visual language for

programming of mobile phones was implemented and used by Nokia. MetaEdit+ is quite

expensive, charging more than 9000 euro for one full license, but has quite old-looking

user interface, while metamodelling part and engine of QReal is free and open-source,

and there is ongoing research of new user interface features.

There are many ―ad-hoc‖ visual programming tools for various applications, for

example, for mobile phones (―ad-hoc‖ in a sense that their visual editors are implemented

by hand for specific tasks). They can be quite useful, but lack main advantage of

metaCASE systems – ability to quickly change existing languages and create new ones

just when the need arises. Also, many of such tools (like iBuildApp and similar services

[10, 11, 12]) are not intended to be used for solving complex tasks like non-trivial client-

server communication.

QReal applies the domain-specific modeling principle to itself — one of its build-in

editors is meta-editor, an editor that allows to describe visual languages by specifying

their meta-models. There is also shape editor that helps to describe concrete syntax of

created language elements. Besides, some research is going on to create tools for rapid

automated development of source code generators.

For behavioral diagrams in QReal there is a possibility to organize visual

interpretation of created models. Diagrams are interpreted step by step allowing

developer to follow the control flow of the diagram. Besides, for some languages there is

also support for debugging of generated source code. In this case the correspondence

between elements on diagram and code lines is being made, which makes possible to

highlight current diagram elements as debugging is being run, show watch-lists of used

variables an so on.

For quick creation of diagram elements and associations between them mouse

gestures recognition mechanism is used. A mouse gesture is associated with every

element of a graphical language, and when user draws this gesture with pressed right

mouse button, QReal recognizes it and creates corresponding element in a workspace of

an editor. To create link between elements one shall simply draw a line starting from one

element and ending on another with right mouse button pressed.

To support multiple users working simultaneously over the models, QReal uses

version control systems as a storage for created diagrams. As yet, QReal supports only

Subversion version control system and implements its most commonly used commands

with proper support for specifics of storing diagrams. For example, it can graphically

show the results of ―diff‖ operation as two diagrams with changes marked on them.

Added, deleted or changed elements are highlighted with different colors.

Features of QReal technology described earlier allow creation of not only graphical

diagram editors, but full development environment with a set of tools that is expected

from common IDEs: version control integration, debugging and so on.

As one case of application of QReal technology, a language for client-server

applications was created. It describes applications consisting of a set of processes

interacting with each other, where part of them is running on a server, and part — on a

mobile client. A program in that language is similar to UML activity diagram and has

operators of signal sending/receiving, device native API calls and calls to external web-

services, flow control operators such as ―if‖, and so on. An example of such program is

shown on Fig. 1.

Most of Ubiq Mobile applications have similar simple structure based on finite

automata, so it is quite convenient target for generation. In addition, there is a special

API extension for Ubiq Mobile, developed for generator integration. All supporting code

for initialization and finalization of processes, message passing and so on is wrapped in

this API, so generated code does not need to implement it. Generated program is mainly

a set of calls to this API and a control flow connecting them.

Domain-specific language allows to invoke API methods directly, writing their calls

in special blocks on diagrams, like assembler insertions in traditional programming

languages. This feature makes possible to leave generator unchanged when underlying

Ubiq Mobile API changes frequently, and provides developers more fine-grained control

over generated application.

Besides the generator we are planning to implement GUI forms editor and a generator

of GUI for mobile phones using Ubiq Mobile. It will allow to create all components of

the target application inside one tool, and being fully integrated with visual DSL, help

developers to be much more productive.

Now we have implemented client-server application for transferring video frames

from a webcam to a mobile phone, fully implemented in QReal, part of it shown on

Fig.1. It has some non-trivial logic, like working with variables, lists of variables,

asynchronous signal sending and receiving, etc. This example can be fully generated into

C# code that will not require handmade changes. So it is a proof that non-trivial

applications could be developed using visual technology, but complex data flow, data

transformations and complex interaction with user require additional visual languages or

even tools (like mentioned before GUI editor), and needs further research to make it

feasible.

Fig. 1. Example of DSL program – server part of client-server application

IV. CONCLUSION

DSM approach, despite its obvious advantages [7], is not sufficiently spread in the

traditional area of industrial software engineering. We believe that in the field of

development of distributed mobile applications the situation will be dramatically

different, first of all due to higher complexity of mobile development in comparison with

―traditional‖ software and thus, higher level of skills requirements for developers. In

addition, mobile distributed services and applications are more specialized and

distributed between domains. The use of DSM approach for distributed mobile services

development significantly reduces the level of complexity of development and makes

programmers’ work easier. On the other hand, natural domain specialization of mobile

services makes easier creation of domain-specific languages (DSLs) focused on various

classes of applications. In the proposed approach, Ubiq Mobile platform provides robust

and high-efficient runtime environment for mobile services while QReal meta-

technology provides abilities to create specialized DSLs for various types of mobile

services and automatically generate object code for Ubiq Mobile platform from these

DSLs.

REFERENCES

[1] http://ibuildapp.com/

[2] http://www.phonegap.com/

[3] http://www.stackmob.com/

[4] Brian Fling. ―Mobile Design and Development: Practical concepts and techniques for

creation mobile sites and web apps‖, O’Reilly Media, 2009

[5] V. Onossovski, A.Terekhov. Ubiq Mobile – a New Universal Platform for Mobile

Online Services, Proceedings of 6th seminar of FRUCT Program, 2009

[6] A. Terekhov, T. Bryksin, Y. Litvinov et al., Architecture of QReal visual modelling

tool (in Russian) // Software engineering, St. Petersburg university press, 2009, p. 171-

196

[7] S. Kelly, J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full Code Generation

// Wiley-IEEE Computer Society Press. 2008. 448 pp.

[8] http://www.eclipse.org/modeling/gmp/

[9] http://www.metacase.com/

[10] http://gotiggr.com/

[11] http://ibuildapp.com/

[12] http://www.appmakr.com/

http://ibuildapp.com/
http://www.phonegap.com/
http://www.stackmob.com/
http://www.eclipse.org/modeling/gmp/
http://www.metacase.com/
http://gotiggr.com/
http://ibuildapp.com/
http://www.appmakr.com/

