
Academic vs. Industrial Software Engineering:
Closing the Gap

Andrey N.Terekhov1 and Len Erlikh2

1 St.Petersburg State University, LANIT-TERCOM
Bibliotechnaya sq., 2, office 3386
198504, St.Petersburg, Russia

ant@tercom.ru
2 Relativity Technologies, Inc.

1001 Winstead Drive
27513, Cary, NC, USA

Len.Erlikh@relativity.com

Abstract. We argue that there is a gap between software engineering
cultivated in the universities and industrial software development. We
believe that it is possible to get academia and industry closer by starting
projects that will require solution of non-trivial scientific tasks from one
side and long-term commitment to create a product out of this research
solutions from the other side. We illustrate our position on a real-world
example of collaboration between an American company Relativity Tech-
nologies and research teams from St.Petersburg and Novosibirk State
Universities. We also point out that the current economic situation in
Russia presents unique opportunity for international projects.

Introduction

Industrial programming is usually associated with big teams of programmers,
strict timelines and established solutions and technologies. On the other hand,
the main goal of academic research is to find new solutions and break existing
stereotypes. Unfortunately, amazingly low percentage of scientific results makes
their way into practice, and even when they do, the process is very slow.

In the meantime, practice always required a solution of the tasks that are
infeasible from the point of view of the existing theory. Today this common truth
takes on special significance for software engineering because the number of its
applications really exploded. A special emphasis on this problem was made by
academician A.P. Ershov. By the way, it is little known that for several years
A.P. Ershov worked as a consultant in research institute “Zvezda” of LNPO
“Krasnaya Zarya” (Leningrad). By tradition of those times this job was not pa-
raded, because the institute worked in the area of government communications,
so later on even specialists who knew A.P. Ershov personally, were surprised
that a scientist so famous was spending his time on such “utilitarian” problems.

It is a well-known situation when practitioner is posing a problem and the-
oretician is reasoning why this task is unlikely to be solved. But the proof of



impossibility of correct solution of the problem does not satisfy the demand for
it, so practitioners start to seek partial or heuristic solutions or try to use “brute
force” method.

In this article we try to show that even on this shaky ground it is better
to use specialists that know the theoretical restrictions, complexity estimations
for this or that solutions, optimization methods and other traditionally scientific
knowledge. This sounds pretty obvious, but somehow the chasm between aca-
demic and scientific communities is very difficult to close. What are the main
reasons for this?

It is well-known that software engineering is differing from pure mathematics
or even computer science. Proved theorem or complexity estimation for some
algorithm are results by themselves, and there are no other requirements for
their creation other than scientists’ talent, pen and paper. On the other hand, in
software engineering a new interesting approach or even working prototype does
not guarantee that they will lead to the successful and ready-to-use product. To
achieve this, one should add up large teams, investments and strict industrial
discipline. In this respect, software engineering is close to elementary-particles
physics or physics of ultralow temperature etc.

Nevertheless, there are some positive examples and we believe that they
could be considered as role-models for promoting collaboration between industry
and science. We try to illustrate this process on the example of creating an
automated reengineering tool RescueWare, which automates reengineering of
legacy software, i.e., conversion of systems written in COBOL, CICS, embedded
SQL, BMS, PL/I, ADABAS Natural and other languages, working mostly on
IBM mainframes to C++, VB or Java. Software reengineering does not end up in
simple translation from one language to another — completlely different schemes
of dialog with the user, access to legacy databases, recovery of lost knowledge
about the program make this task much more difficult.

This project was carried out by large international team, which was geograph-
ically spread from North Carolina (USA) to St.Petersburg and Novosibirsk. The
customer for this project was an American company Relativity Technologies,
and the team that worked on this project included scientists from S.-Petersburg
and Novosibirsk universities, LANIT-TERCOM company and Institue of Infor-
matics Systems of Siberian division of Russian Academy of Sciences. The total
investment in this system amounts to more than 400 man-years.

Our collaboration began in 1991, and during these years we have overcome a
lot of difficulties, mostly related to cultural difference and lack of understanding.
Finally, as a result of common efforts we created a science intensive product Res-
cueWare Workbench, which was recognized by Gartner Group as a best product
in 2000 in the area of legacy understanding. In the following sections we give a
detailed descriptions of the hard problems that we had to solve in order to make
this project a success.



1 Architecture for multi-language support

From the very beginning we were oriented on creation of multi-language trans-
lator, so one of our first tasks was to design a unified intermediate language (IL)
for our system. The idea is that program transformation is two-staged: at first
the program is converted to IL, and then to the target language. When there
are M input and N output languages, this approach makes it possible to limit
the amount of work to M + N compilers instead of M ∗N .

Under the name of UNCOL this approach is known for more than 30 years.
A lot of teams were trying to implement it, but only a few managed to create
something tangible [1, 2]. Now what is the problem? From the theoretical point of
view, all langugages are computationally equivalent, and thus conversion should
be quite simple. The difficulties arise when we are measuring the quality of out-
put program not only from the point of view of its performance, but mostly from
the point of view of naturality of program’s structure in this or that language.

Every programming language gives us some means of expression and a disci-
pline of using them. At that, the most quality from the point of view of quality
and easiness of maintenace could be attributed to those programs that meet the
requirements of this discipline.

The problem appears when notion of “natural program” in one language
contradicts with the same notion in other language. For instance, using GOTO
statements is usual for COBOL, but in Java there are no such statements at
all. Some special and sometimes non-trivial transformations, dependent both on
initial and target platforms, may be required to solve this problem.

Let us name the main levels of program representation:

1. Control flow representation
2. Data flow representation
3. Representation of values

Thus IL must contain abstract means for program representation at all these
levels, and the transformation will look as follows: first language constructs of
the source language are “raised” to abstract intermediate representation and
then they are “lowered” to concrete representation in the target language. The
degree of abstraction should be carefully chosen to make sure that this lowering
down leads to natural projections to the target language.

The most important condition for the proposed approach is the orthogonality
of translations to IL and from it. This means that the representation of source
program in IL should not depend on the target language.

Finally, IL should be extendable, i.e., it should contain features that permit
to build new constructs without changes to all existing passes of compiler.

The weak point during IL design is the choice of data types and standard
opertions. While the set of control constructs in different languages is more or less
suitable for unification, data types system could be significantly different. It is
inexpedient to simply combine all types of the source languages, because addition
of new language will require major changes to existing compiler functionality.



To solve this problem, it is important to add not only standard data types
to IL, but also add formalism of higher order — type constructor — which
could be regarded as a function, which produces a new type out of several given
types. For example, abstractions such as structures, arrays and pointers could
be considered as type constructors. Indeed, the structure could be defined as
a type constructor, which receives a set of field types and creates a structured
types with the fields of corresponding types.

Finally, usage of type constructors eases runtime support, for we can consider
type constructor, which is treated as an abstract dynamic data type and could
be used only through runtime support functions. This ensures that the addition
of a new entity requires changes in only one compiler pass — namely, of the pass,
which creates this entity. After that all handling of this entity will be transparent
to the compiler and conducted through conversion of type constructors.

We believe that this task presents a good example of semantic gap between
academic research and industrial programming. The idea of unified IL makes
sense only in large-scale projects, and these projects are out of acaedimic scope.
On the other hand, average programmer in the industry just does not possess all
the knowledge, which is required for successful implementation of this approach.

Note that “naturality” of IL structure, which was mentioned above, is also a
good example of difficult to formalize notions. These notions are often necessary
to solve usual everyday tasks. Another example of difficult to formalize notions
is the definition of “good program” criteria [3].

2 Re-modularization. Class Builder

Another interesting task that we encountered during creation of automated
reengineering tool is re-modularization of programs into components [4, 5].

This task could be described as follows: there is a large application that con-
sists of multiple files, which contain declaration of data and procedures. Variables
and procedures from different files are interacting with each other through some
external objects, which we called dataports. For legacy systems usual dataports
are CICS statements, embedded SQL and other infrastructure elements.

This task was formalized as follows: application was represented as a graph
with application objects as junctions of various types (variable, procedure or
external object), and relations between them as graph edges. Edges are also
typed (for instance, procedure call, variable usage in procedure, working with
external object through variable etc.). Also, each edge is attributed with some
number, which defines the “power” of this relation. For example, the power for
procedure call relation could be defined by the number of parameters passed:
the more parameters we have, the more we want to place both callee and caller
to one component.

This graph should be divided into some areas of strong connectivity. To do
this, we introduce the notion of gravity between two nodes, which is calculated
as sum of powers of all edges connecting them multiplied to coefficient defined



by the edge type, minus some constant, which is defined by the pair of edge
types.

Some negative part of the formula — the repulsive force — should be in-
cluded, otherwise we will always get one monolith. For instance, it seems natu-
ral to add repulsive forces between dataports and any procedures. This way we
want to separate all procedures first and only when two procedures are using
too many common variables, then the gravity force prevails.

Then by complete enumeration we find those junction sets, for which the
sum of gravity force between themselves and the junctions from other sets are
maximal (of course, gravity forces with the junctions of other groups are taken
with minus sign).

It is clear that this good idea will not work in real life, because the number of
graph junctions in real applications is way too much to use exhaustive searches.
But we managed to find some heuristic approaches, which made it possible to
achieve practical results.

First of all, we fixed some coefficients for different types of edges and repulsive
forces for different types of junctions. However, the user can assign coefficients
on his own if he believes this to be of importance for his application.

Secondly, in the complete graph of application we will start with sub-graph,
which consists of the junctions corresponding to external object plus edges and
junctions of any other types, which connect these external objects. The heuristics
is that we believe external objects to be cross-linking and thus we add repulsive
forces only for them. On the other hand, if two external objects are using a lot
of common variables and procedures, then nothing prevents them from ending
up in one component.

Thirdly, we will regard all edges of reduced graph as being of the same type,
but we will define the power of each edge so that the more relations there are
(not only direct, but also transitive ones), the bigger is power. To formalize this
notion of “bigger”, we will use the physical model.

To calculate the power of edges in reduced graph we proposed to use the
model of electric mains. In this model we will consider that there exists a wire
between any two junctions of the input graph that have a positive gravity force
between them and we will equal this force to the conductivity of the wire (let us
remind that conductivity is the reverse function of resistance). Then as a power
of edge between two junctions of the reduced graph we can use the complete
conductivity of the electrical network between them. The complete conductivity
could be calculated using Kirhgof equations, so we need to solve a set of linear
equations. The complexity of this task is equal to finding the inverse matrix.

3 Program Slicing

Let us suppose that a legacy system performs ten functions, seven of which are no
longer needed, but the remaining three are in active use, and as it often happens
with legacy programs, nobody knows how these three functions work. In this
case it is necessary to create a tool for deep analysis of the old programs, which



can help maintenance engineer to find and pick out the required functionality,
put the corresponding parts of the program into a separate module and reuse it
in the future, for instance, to move it to modern language platform.

The solution of this task is based on creating static slices of the program
and their modifications. We regard program slices to be a subset of program
statements that presents the same execution context as the whole program. Slice
is a program that contains the given statement and some other statements of
the initial program, namely those that are related to this statement.

The following methods are implemented in RescueWare for automation of
business rule extraction (BRE):

– Computational-based BRE
– Domain-oriented BRE
– Structure-oriented BRE
– Global BRE

All these methods assume generation of syntactically correct independent
programs that preserve the semantics of the original code fragments.

Computational-based BRE forms the functional slice of the program, based
upon the execution path and data definitions that are required to calculate the
values of the given variable in the certain point of the program [9]).

Domain-oriented BRE generates functional slice of the program, which is re-
ceived by fixing the value of one of the input variables. Being based on theory
of program specialization, domain-oriented BRE is best suited to separate cal-
culations with many transactions and mixed input, into a series of “narrowly
specialized” business rules with only one transaction for each of them.

Structure-oriented BRE makes it possible to divide the programs written as
a single monolith into several independent business rules, based on the physical
structure of the initial program. Also, an additional program is generated that
calls the extracted slices in a proper sequence and using the correct parameters
(ensuring the semantic equivalence of this program to the initial one). This
method is best suited to divide old large programs into parts that are easier to
handle.

Finally, global BRE helps to apply all of the methods mentioned above to
a number of programs simultaneously, and thus supports BRE on system-wide
basis.

Notwithstanding all automation, the choice of slicing points in the program
and the sequence of application of different BRE methods are left to the hu-
man analytic, which decomposes the initial system. There are several natural
points to start applying BRE, for instance, the places where the calculated val-
ues are stored to the database or printed to screen. Of course, intelligent choice
of candidates for business rules requires knowledge about functions of the initial
system.

On closer examination it often turns out that the methods used are differing
from one module to another. Moreover, it is sometimes useful to apply different
BRE methods subsequently to the same program.



4 Conclusion

As of right now, products such as RescueWare are not really typical for the
market, because creation of RescueWare required solution of many scientifically
difficult problems. Let us briefly mention other achievements: relaxed parser that
ensures collection of useful information even for quite distant dialects of the
language, different variants of data flow analysis, using sophisticated algorithms
of pattern matching for identification of structure fields in PL/I etc.

Of course, not all projects require investment of this amount of research. Even
in our own practice not all projects both in Russia and USA were so rewarding.
Our present understanding of importance of education and training in software
engineering came only after a lot of painful experience. The contacts with the
universities are important for the industry not only because of the talent pool
accumulated there, but also because of new ideas and scientific breakthroughs
that can make the sofware product a success. This road is very difficult; some-
times the scientific research contradicts with the strict timelines and discipline,
but the potential payoff of this approach is immense.

Finally, we would like to emphasize that Russia is in a special position to
make this vision come true, because it has an undoubted advantage in the level
of education at the software market. We hope that our experience of successful
cooperation of American company with Russian scientists could serve as a good
example for many Western companies.

References

1. A.P. Ershov “Design specifications for multi-language programming system”, Cy-
bernetics, 1975, No. 4. P. 11–27 (in Russian)

2. GCC home page. http://www.gnu.org/software/gcc/gcc.html
3. I.V. Pottosin “A “Good Program”: An Attempt at an Exact Definition of the

Term” // Programming and Computer Software, Vol. 23, No. 2, 1997. P. 59–69.
4. A.A. Terekhov “Automated extraction of classes from legacy systems” // In

A.N. Terekhov, A.A. Terekhov (eds.) “Automated Software Reengineering”, S.-
Petersburg, 2000, P. 229–250 (in Russian)

5. S. Jarzabek, P. Knauber “Synergy between Component-based and Generative Ap-
proaches”, In Proceedings of ESEC/FSE’99, Lecture Notes in Computer Science
No. 1687, Springer Verlag, P. 429–445.

6. M. Weiser “Program Slicing” // IEEE Transactions on Software Engineering. July
1984. N 4. P. 352–357.

7. T. Ball, S. Horwitz “Slicing Programs with Arbitrary Control Flow” // Proceedings
of the 1st International Workshop on Automated and Algorithmic Debugging.
1993.

8. M.A. Bulyonkov, D.E. Baburin “HyperCode — open system for program visual-
ization” // In A.N. Terekhov, A.A. Terekhov (eds.) “Automated Software Reengi-
neering”, S.-Petersburg, 2000. P. 165–183 (in Russian)

9. A.V. Drunin “Automated creation of program components on the basis of legacy
programs” // In A.N. Terekhov, A.A. Terekhov (eds.) “Automated Software
Reengineering”, S.-Petersburg, 2000. P. 184–205 (in Russian)


