

ISSN 0361-7688, Programming and Computer Software, 2007, Vol. 33, No. 1, pp. 24–33. © Pleiades Publishing, Ltd., 2007.
Original Russian Text © A.N. Terekhov, V.V. Sokolov, 2007, published in Programmirovanie, 2007, Vol. 33, No. 1.

24

1. INTRODUCTION

Our team has been engaged in the development of
software for telephone exchanges and other real-time
systems since the beginning of the 1980s. It turned out
that the most difficult aspect is interaction between cus-
tomers, algorithm creators, programmers, protocol
experts, electronics engineers, etc. Moreover, problems
arise because of communication gap rather than inade-
quate qualification of the development partners. To
overcome these difficulties, the International Consulta-
tive Committee on Telegraphy and Telephony (CCITT,
nowadays ITU-T) has designed a series of graphical
description methods, in particular, the Specification
and Description Language (SDL) [1] and Message
Sequence Chart (MSC) [2].

An SDL diagram is very similar to traditional flow-
charts, but has several important extensions: the symbol
of a state in which the process does not load the proces-
sor and is waiting for reception of one or several sig-
nals, the signal input symbol, and signal sending sym-
bol (Fig. 1). In the SDL diagrams, a special attention is
paid to the signal use logic, whereas the logic of execu-
tion of actions not related to the signals is detailed only
when required. Therefore, an action can be either
atomic, as shown in Fig. 1, or rather complex, consist-
ing of tens or hundreds of operators.

MSC diagrams

1

 allow one to describe scenarios of
the time behavior of the system. Time runs from top to
bottom; vertical lines represent system objects; and

1

At present, HMSC diagrams [3], which are extensions of MSC
diagrams, are widely used. Inherently, they are similar to the
MSC diagrams in many respects; for this reason, we will not con-
sider them separately and will include them into the term MSC.

arrows designating signals

2

 are drawn between them. A
primitive MSC diagram is shown in Fig. 2. The MSC
diagrams consist of separate scenarios and structures
specifying the sequences of execution of these scenar-
ios. They are widely used by various international orga-
nizations to describe protocols, for example, standards
developed by the ITU-T organization; however,
exhaustive descriptions of system behavior, including
emergency processing, maintenance, tariffication, etc.,
are rarely presented. Both MSC and SDL diagrams are
applied to describe the dynamic behavior of a system;

3

their comparative analysis is given in the table.
In modern systems, both standards are used,

because they provide different information on the
dynamic behavior of an object and supplement each
other. Similarly, they both are required for technology.
Correspondingly, there is a need in their consistency.

In the paper, we briefly substantiate the use of both
MSC and SDL diagrams in one tool, describe the exist-
ing approaches to their simultaneous use, and point out
the problematic aspects. Our technological tool REAL
[4] also uses both MSC and SDL diagrams and we
describe our approach to the resolution of the problems.

2. DISCUSSION OF THE PROBLEM

We have already mentioned that MSC and SDL give
different views of the system. We emphasize that they
are not just different representations of the same model,

2

In the paper, the concepts of the SDL signal and the MSC mes-
sage are considered to be equivalent.

3

These models also include tools for describing the static part of
the system, but there are no difficulties here.

Implementation of the Conformation of MSC
and SDL Diagrams in the REAL Technology

A. N. Terekhov and V. V. Sokolov

St. Petersburg State University,
Universitetskii pr. 28, Petrodvorets, St. Petersburg, 198504 Russia

e-mail: ant@tercom.ru, svv@tercom.ru

Received October 13, 2004

Abstract

—Various methods of relating MSC and SDL diagrams are considered, including methods that allow
one to automate manual conversion from scenarios of the behavior of the entire system (HMSC/MSC) to behav-
ior models of separate objects (SDL), methods for supporting their conformity during the entire life cycle (con-
certed modification), and extensions of the MSC diagrams for real situations. The existing algorithms are
reviewed, their advantages and disadvantages are considered, and our own approaches eliminating the disad-
vantages are proposed. The proposed algorithms are integrated into one complex.

DOI:

10.1134/S0361768807010045

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 1

2007

IMPLEMENTATION OF THE CONFORMATION 25

but contain different information. For example, only
from the SDL diagrams, we can ascertain that one or
another behavior has been selected. The corresponding
information is stored in variables that are absent in the
MSC diagrams.

To specify the information that is contained only in
the MSC diagrams, let us consider a hypothetical situ-
ation with a bank, when a teller gives money to some
clients immediately and first consults with the bank
director before giving money to other clients. Having
the SDL models of all participants, it is generally
impossible to determine whether the director partici-
pates in the procedure of payment to a certain client. It
is possible to show that this problem is similar to the
problem of self-applicability and is algorithmically
unsolvable. The corresponding information is stored in
the MSC diagrams, which contain information not only
about the way the objects exchange messages, but also
about who participates in the communication scenarios.

Therefore, to obtain some kind of information, it is
necessary to refer to the MSC diagrams, and to obtain
another kind of information, to the SDL diagrams. That
is why both diagram types are used in modern techno-
logical tools. The process of creating a system in our
technological tool REAL at the time when paper [4]
was written is shown in Fig. 3. It is seen that there is a
gap between the MSC and SDL models, which retards
the development, because the system dynamics is dou-
bly created first by MSC and then by SDL, and can
result in errors when the models are inconsistent. In our

opinion, a gap between the MSC-like model and SDL
also occurs in other approaches, such as UML
Sequence and Collaboration diagrams [5, 6], as well as
in approaches based on MSC without UML, or in
approaches based on UseCaseMaps [7].

For a technologist, it would be ideal if there were
some universal model, a kind of a three-dimensional
cube one face of which shows the SDL diagrams and
other face presents the MSC diagrams. As far as we
know, such a model does not exist, and we can only
refer to several approaches to co-ordination of the MSC
and SDL diagrams in the existing CASE systems. They
can conditionally be divided into the following groups.

1. MSC and SDL are independent.
(a) MSC and SDL represent separate independent

types of diagrams. In this case, their inconsistency
results in potential errors.

msc

 Sample

O

1

O

2

O

3

x

y

z

Fig. 2.

 Example of MSC diagram.

Initial transition state

x y

Input signals

x

 and

y

Condition

D

z

Var: = 0

…

Operator

Condition

D

S

1

Connector

Send
signal

z

Final state of transition

S

0

Fig. 1.

 Example of SDL diagram.

Comparative characteristics of SDL and MSC

MSC SDL

Describes interaction of dif-
ferent parts of the system; is
external for the object

Describes the interior of
each object; is internal for
the object

The logic of interaction of
several objects is repre-
sented. The behavior logic of
each object is hidden

The behavior logic of each
object is represented. The
logic of their interaction is
hidden

Information about the choice
of a behavior is verbal

The logic of the functioning
is detailed up to the variable
values

Are created at the design
stage

Are created at the program-
ming stage

Are used when discussing the
problem with experts in the
knowledge domain

Are used by the program-
mers mainly

26

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 1

2007

 TEREKHOV, SOKOLOV

(b) Conversion of MSC diagrams to SDL diagrams
is being performed by a person; this introduces errors
and often leads to non-optimal decisions and unneces-
sary and redundant code, especially in the case of long-
term support of the project.

2. Attempts to create systems on the basis of the
MSC diagrams with subsequent SDL synthesis.

(a) An attempt to support the entire development
cycle entails extension of the MSC standard and
transfer of the code, data, and other technical details
into the MSC diagrams [8]. After that, there arise
problems associated with an increase of the number
of scenarios and subsequent inconsistency of code
fragments. The MSC structure is hardly applicable
for representing a code in it. MSC diagrams answer
the question “What can happen?” rather than the
question “Why does it happen this way?” As a result,
they are redundant and poorly adapted to the use of
“arithmetic” data in them.

(b) One-way synthesis. Here, SDL diagrams are
once synthesized from MSC diagrams, and, then, the
derived structures are used [8–10]. In this case, manual
modification is very expensive. It often results in total
disregard of the MSC diagrams used in the synthesis.

(c) Incremental algorithms. The MSC standard is
reduced to the diagrams describing only traces.

4

 There
are algorithms [11] that allow one to add a new MSC
specification (trace) to SDL diagrams. The described
approach gives results only on a specific class of prob-
lems because of cyclicity in real problems. For the orig-
inal MSC standard, the problem of development of
incremental algorithms was also considered, but it was
solved only for a very restricted set of changes [12].

The algorithms used in items 2.c and 2.b [9, 10] are
capable of synthesis not from all MSC descriptions.
The algorithm of item 2.a can do it always. A side effect
of this algorithm is that, in the process of its function-
ing, the data can be transformed in such a way that the
initial MSC diagram will be hardly recognized in the
derived SDL diagram. Let us note here that the impos-
sibility to carry out synthesis in many reasonable situa-
tions is a very weak point; that is why the authors prefer
variants of the algorithm 2.a.

3. Algorithms of comparison of the MSC and SDL
diagrams for conformity checking.

(a) Traces are created on the basis of MSC diagrams,
and the derived traces are “superposed” onto the SDL
diagrams

5

 [13–15]. If the trace fits the diagram, then
everything is fine. If it does not, then the situation is
considered to be erroneous. This method is not suffi-
ciently effective, because addition of a debugging sig-
nal somewhere breaks the signal sequence in the trace,
and the SDL model is assumed not to conform to the
MSC specifications [16]. This method cannot be used
to check up a case when an SDL model is an implemen-
tation of several roles from MSC diagrams simulta-
neously.

(b) The authors are aware of the idea of modification
of the previous algorithm with permission to skip sig-
nals. It was described in [17], but is not widely used
because of low reliability of the results.

(c) Usage of one of the algorithms [18] concerned
with analysis of the internal states of a protocol, with
two models—MSC and SDL—being executed in paral-
lel. In the course of execution, it is checked whether the
sent and received signals are identical. The algorithms
were initially developed for checking internal consis-
tency of an algorithm and cease to give results when
checking conformity of the SDL diagrams to MSC
under presence of disagreements between MSC and
SDL, such as absence of cyclicity in the MSC docu-
mentation and its presence in the SDL model.

In our opinion, both MSC and SDL diagrams should
be included into a CASE system to support the possibil-
ity of different views on the system dynamics. Practice
shows that, in industrial systems, SDL must represent

4

In this paper, a trace is meant to be a sequence of messages.

5

In the sense of each-symbol coincidence of the trace signals with
the diagram signals.

External actors

D
e

s
i

g
n Use cases and functions

Splitting of system on classes

Detailing in MSC diagrams

E
xt

en
si

on
s

fo
r

de
si

gn
 s

ta
ge

P
ro

g
ra

m
m

in
g

Manual labor

Implementation with use of
SDL diagrams

Target code

Su
bj

ec
t o

f
th

is
 p

ap
er

T
he

 f
ir

st
ap

pr
oa

ch
es

Fig. 3.

 Place of SDL and MSC diagrams in technology
REAL at the moment of writing paper [4].

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 1

2007

IMPLEMENTATION OF THE CONFORMATION 27

not only the documentation, but also the program from
which the executable code can be generated automati-
cally. To develop an integrated system for the MSC and
SDL diagrams, it is necessary to use procedures of tran-
sition both from MSC to SDL (generation) and back
(verification tools). Here, there are several issues to be
elaborated:

• improve the verification procedure so that it allows
one to check the conformity of the models when they
differ, which is inevitable during the life cycle, more
reliably;

• modify the generation algorithm [8] so that it is
possible to affect it to obtain a more obvious and con-
venient SDL model, instead of the single variant pro-
duced in generation;

• improve descriptive characteristics of the MSC, so
as to enable one to create more complete models of the
MSC level; this is necessary for both generation and
verification, as well as for more detailed development
of the specifications.

The best tool pair existing today in the market is
the pair of Telelogic Tau [16] and the facility of dia-
gram generation KLOCWork

6

 [20, 21]. This is an
integrated approach that uses both generation and ver-
ification (algorithms 3.c, 3.a, and 2.b in our classifica-
tion). This pair is also not free from the above-men-
tioned difficulties.

3. THE SUGGESTED DECISIONS
On the basis of the technological tool [4], we have

developed a number of algorithms that resolve difficul-
ties stated in Section 2. This tool was supplemented
with the following innovations:

• an extended MSC language for creation of more
complete MSC descriptions of a system;

• customizable generation from the MSC model to
the SDL model;

• an original procedure of conformity checking of
the SDL program and the MSC documentation.

3.1. A New Verification Method

We have developed a special verification method for
checking conformity of the SDL diagrams to the MSC
documentation in the case where there are differences
between the MSC and SDL diagrams, but both diagram
types are known to correspond to the behavior of the
same object. In contrast to other methods, which are
based on various demonstrations that the SDL and
MSC models are “the same,” our method is based on
the concept of invariant that is preserved under a certain
class of modifications of the MSC and SDL models in
the life cycle of the development. Here, the MSC and

6

An official partner of Telelogic; a part of this project was known
as MOST [19].

the SDL models may differ from each other and corre-
spond to each other at the same time, but only until they
have a common invariant. Speaking simply, an MSC
model determining the trace

abc

 corresponds to an SDL
model determining the trace

abecd

, but does not corre-
spond to the SDL model determining the trace

abbc

. To
explain this, let symbols

a

,

b

, and

c

 denote “Question,”
“Answer,” and “Confirmation.” Then, the first SDL
model is characterized by implementation of some
additional functionality that does not break the initial
one, and the second model specifies an absolutely dif-
ferent exchange algorithm.

When checking MSC–SDL, we leave only symbols
from the set {

a

,

b

,

c

} in both models. This set contains
all common symbols of the two models. Note that the
(reduced) MSC trace will be superposed on the reduced
first SDL model, but will not go into the second reduced
model. In the real checking algorithm, it is required that
the whole finite state automaton from the MSC dia-
grams could be superposed. This requirement corre-
sponds to the existence of a superposition for every
trace; moreover, all traces must start from one point
rather that simply exist somewhere in the SDL diagram.

Checking algorithm

7

1. Successively, for all objects of the SDL diagrams
to be checked:

2. Choose an SDL diagram of the object and the set
of the MSC diagrams being checked that contain this
object.

3. Successively, for all MSC diagrams being
checked set them as initial ones.

4. Construct finite-state automata for both diagram
types. For the SDL, the initial state is taken to be the ini-
tial SDL state, and for the MSC, it is the diagram cho-
sen as the initial one on step 3.

5. Each finite-state automaton must generate a set of
traces of the chosen object with relation to the given
diagram type. Therefore, all states of the finite-state
automata are marked as terminal ones.

6. The set of essential messages, which are those
that present in each finite-state automaton, is defined.

7. Replace all other messages with

ε

-transitions in
both automata. From this stage, the finite-state autom-
ata are referred to as “reduced.”

8. Ascertain whether there is at least one such a state
of the reduced SDL automaton such that

all

 traces of

any length

 from the reduced MSC automaton can be
laid starting with it.

9. If there are no contradictions, the corresponding
nodes must exist for all MSC diagrams of every object.
If there are discrepancies, this will be true for some
MSC diagrams of some objects.

7

Details of this algorithm can be found in [22].

28

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 1

2007

 TEREKHOV, SOKOLOV

Example. Checking for conformity of the SDL
diagrams to the MSC documentation under existing
differences.

Let MSC specifications 1, 2, 3, and 4 exist. Specifica-
tions 1 and 2 are represented in Fig. 4, and specifications
3 and 4, in Fig. 5. Let also an SDL implementation
shown in Fig. 6 be given. It is required to analyze confor-
mity of the implementation to various specification sets.

Our method allows one to reveal that the SDL
implementation

(1) satisfies MSC specification 1, without taking
into consideration specifications 2, 3, and 4;

(2) satisfies MSC specification 2, without taking
into consideration specifications 1, 3, and 4;

(3) satisfies specifications 1 and 2 if specification 1
is initial;

(4) satisfies specifications 1 and 2 if specification 2
is initial;

(5) satisfies specification 3; and
(6) does not satisfy specification 4.

3.2. Improvement of the Generation Method
for Increasing Readability of the SDL Diagrams

Let us begin this section with an example, which
shows different variants of the SDL code that can be gen-
erated from the same set of the MSC diagrams. Let the
initial MSC diagrams be represented in Figs. 7 and 8, and
the SDL results, in Figs. 9 and 10. Using MSC diagrams,
we create the SDL diagram that represents the behavior
of object 1. Both created SDL diagrams from Figs. 9 and
10 correspond to the initial MSC diagrams. It is obvious
that the diagram in Fig. 10 should be chosen between
two SDL diagrams as an implementation.

Unfortunately, the automatic generation algorithm
[8] will produce another diagram. The cause is the
requirement that the automaton must be deterministic.

This requirement can be weakened: it is sufficient that
it is deterministic for incoming signals. From the SDL
standpoint, this means that any incoming signal is asso-
ciated with a certain behavior. However, it is admissible
that the same signal was sent at the beginning of two
conditional branches, which is shown in Fig. 10 after
the uppermost condition.

Let us turn to Fig. 11. This is the finite-state autom-
aton corresponding to the considered example. As can

C

1

C

2

C

2

C

1

C

2

Checked Checked

msc

 1

msc

 2

1

2

3

4

a

b

c

d

Fig. 4.

 MSC diagrams 1 and 2 for conformity checking.

msc

 3

msc

 4

Checked Checked

a

b

1

2

3

4

a

b

Fig. 5.

 MSC diagrams 3 and 4 for conformity checking.

S

1

a

b

3

4

C

1

Notification

S

2

c

1

d

2

C

2

S

1

Fig. 6.

 SDL diagram being checked.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 1

2007

IMPLEMENTATION OF THE CONFORMATION 29

be seen, it is more compact than the MSC and SDL dia-
grams. This is because it contains no information about
other objects from the MSC diagrams and no informa-
tion about the decision-making logic of the SDL dia-
gram.

We propose to give this automaton to a technologist
as an intermediate model between the MSC and SDL
diagrams. Owning to its compactness, it is possible to
introduce necessary modifications in it: to “redistrib-
ute” the signals, to merge some sections together, to
unglues others, to specify procedures, etc. Then, one
can check the automaton for possibility of generation
according to the criterion formulated in the beginning
of the section and develop the SDL code. This gives us
opportunity to create interactively several variants of
SDL models and choose the most suitable one.

The distinction of the proposed method from the
existing generation algorithms is that we managed to
save the opportunity of creation of the SDL from all
possible MSC diagrams. At the same time, a technolo-
gist gets not the single SDL model but selects one from
the set of possible models that better suits the internal
logic of the system and possesses better “readability.”

3.3. Extension of the MSC Language
for Improving Its Descriptive Characteristics

The experience of practical use of the MSC dia-
grams in the development of telephone exchanges
shows that a great defect of the MSC diagrams is their
orientation toward description of direct branches only.
After the structure describing the ideal behavior of the
system is designed, it is very difficult to add any new

msc

 Report

Expenditures

Income

alt

1 2

Fig. 7.

 Main MSC diagram for the example of generation.

C

2

C

2

C

1

C

1

msc

 Income

msc

 Expenditures

1 221

Request Request

Start of operation

Income_N

Income report

Start of operation

Expenditures_N

Expenditures
report

Fig. 8.

 Detailing MSC diagrams for the example of genera-
tion.

Request

Start of
operation

Income_N Expendi-
tures_N

Income
report

Income
reportIncome_N Expendi-

tures_N
Expendi-
tures report

Expendi-
tures report

C

1

C

2

C

3

Fig. 9.

 Classical result of generation.

State

30

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 33

No. 1

2007

 TEREKHOV, SOKOLOV

branches implementing processing of various errors.
The description of a small section implementing an
error situation entails addition of one more interaction
variant to those already existing on this level. After that,
it is necessary to add a processing variant on the previ-
ous level (which was worked out in detail). The error
processing often does not terminate on this level, which
gives rise to redrawing higher levels as well. Therefore,
the description of an additional variant entails much
redrawing, and the resulting diagrams grow rapidly as
the number of the behavior variants grows. Compared
with the programming language Pascal, in the MSC
diagrams, it is possible to call a procedure, but there is
no opportunity to call a function and obtain the result of
its execution. However, in real applications, it is
required to foresee the situation where a behavior block

can return a number of errors upon its execution. The
MSC language has been extended with appropriate pos-
sibilities. Along with graphical descriptions, it is pro-
posed to use text descriptions of the following type:
function scenario_1(Object1, Obj.2, Obj.3)
{

if (scenario_2(Object1, Obj.2,
Obj.3)!=1) {

 scenario_3(Obj.2, Obj.3);
 scenario_4(Obj.2, Obj.3);

} else {
 while (scenario_5(Object1,

Obj.2)==7) {
if (! scenario_6(Object1,

Obj.2))
return 0;

 }
}
return 1;

}
The idea of construction consists in the following.

Suppose that we have a scenario with three execution
variants. For each variant, we create the corresponding
scenario and number them from 1 to 3. The construct of
the form
if (scenario(…)!=1)

 A
else

 B;

Request

Start of
operation

Start of
operation

Income_N Expenditures_NIncome
report

Expenditures
report

C1 C2

Fig. 10. Our result of generation.

Request

Request

Start of operation

Start of operation

Income_N

Expenditures_N

Income report

Expenditures report

Fig. 11. Automaton derived from the MSC diagrams in
Figs. 7 and 8 for object 1.

State

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 1 2007

IMPLEMENTATION OF THE CONFORMATION 31

can be represented as an ordinary MSC diagram con-
sisting of scenarios 1, 2, 3, A, and B. Similar construc-
tions can be generated for other operators and scenar-
ios. It is asserted that such an approach corresponds
better to the logic of the communication protocols.
A man better perceives exchange of messages in a
graphic form, whereas the logic of integration of vari-
ous scenarios is better described by text constructions.

Description of the suggested extension
For text descriptions, we introduce the following

operators:
• if else,
• switch,
• for-definite (repeat N times),
• for-indefinite (repeat 0…∞ times),
• while,
• do while

with C-like syntax. Neither variables nor numerical
operations are introduced.

To describe a return operator, we use the word
return. The result of this operator is a number. This
number is analyzed in the checking operators if,
switch, and while. It must be known by the beginning
of the compilation, and the result of execution of only
one scenario is used.

In the resulting extension, we have the following
structure blocks:

• Blocks that return nothing. These are
– ordinary MSC diagrams, e.g., in Fig. 12 (left

panel);
– text insertions that do not contain word return,

e.g., t_scenario described below. The headings of

such insertions contain word procedure with a list of
objects participating in this scenario.

We will term them as MSC procedures. The text
insertions can be used as an analogue of the MSC text
descriptions.

• Blocks that return a result. These are
– MSC diagrams supplemented with a return arrow

(such a diagram is represented in Fig. 12, right panel);
– text insertions that contain word return, e.g., the

scenario mentioned above. The headings of such inser-
tions contain word function with a list of objects par-
ticipating in this scenario.

We will term them as MSC functions. Their distinc-
tion from the procedures is that they are supplemented
with a tag that contains information about what has
happened in the scenario. This information is incom-
plete and divides all possible variants of the behavior
into several classes.

Consider an example. Suppose that we have two
ordinary MSC diagrams depicted in Fig. 12 and the fol-
lowing text insertion (which is an MSC procedure):
procedure t_scenario(O1, O2, O3) {
if (f_scenario_1(O1, O2)==1) {

 while (f_scenario_1(O1, O2)>1)
p_scenario_1(O1, O3);

} else
 p_scenario_2(O1, O3);

}
An analogue of the text description of t_scenario

in the MSC standard [2] is shown in Fig. 13. The pro-
posed extension should be treated similarly: it gives us
opportunity to use text extensions with operators, and a
certain MSC diagram will correspond to it. Although
compatibility with the standards is important, the pri-

msc p_scenario_1 msc f_scenario_1

O1 O3 O1 O2

O1 O3

D

E

A

B

C

alt

return 1

return 2

Fig. 12. Two graphic procedures and one graphic function.

msc p_scenario_2

32

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 1 2007

 TEREKHOV, SOKOLOV

mary application of this method of description is gener-
ation and verification of the SDL models; therefore,
some inconvenience of representation in the MSC stan-
dard is allowed. It is clear that the proposed method is
designed for working with high-level MSC descriptions
without considering what correspond to them in the
MSC standard. Representation according to the stan-
dard is required only for using the solution in the exist-
ing tools.

Comparison with the existing models

Considering the suggested approach in the class of
means of description of a system containing interacting
objects, we should exclude a number of graphic mod-
els, such as SDL [1] and StateChart [5], and the text
languages (a review of the latter can be found in [24]),
because they provide view from only one object rather
than from several ones. Compared to the UML
Sequence [5], UML Collaboration [5], UML Activity
[5], and Use Case Maps [7] diagrams, our approach is
preferable owning to its higher flexibility and, as a
result, the possibility of deriving more complete
descriptions.

The most similar model is another MSC extension
called Life Sequence Charts (LSCs) [23], which is an
attempt to adapt the MSC scenarios for description of
real systems. Our approach gives us opportunity to
describe various behavior variants more conveniently,

because LSCs allows one to choose only two basic vari-
ants—normal and erroneous—of the scenario comple-
tion. It should be mentioned also that the disadvantage
of the LSCs model is that this approach deviates greatly
from the standard, which requires creating special tools
for this model.

4. CONCLUSIONS

In our technology, we have combined the proposed
approaches to linking-up the MSC and SDL diagrams.
This is represented graphically in Fig. 14.

There, the following points should be emphasized:
(1) one editor for the data structures, which ensures

consistency of static parts of the models;
(2) the proposed extension of the MSC diagrams,

which enables creation of the MSC models represent-
ing real-life situations;

(3) generation functions that allow one to obtain a
skeleton of the SDL code from the MSC model, which
considerably reduces the development time;

(4) the possibility to extend SDL with fragments of
a high-level language for the subsequent generation of
the executable code;

(5) the possibility of checking conformity of the
SDL diagrams to the MSC documentation upon modi-
fications of any of these models.

In the context of our technology, the approach
described above makes it possible to speed up the pro-
cess of software development and to improve quality of
the resulting product due to the maximal coordination
of all technology models. We wrote about linking-up of
the other models in [4]. The models are chosen in such
a way that they basically cover the area of telecommu-
nication systems and real-time systems. Our approach

Condition

Condition

msc p_scenario_result
O1 O2 O3

A

B

C
D

A

A

B

A

C

E

alt

Fig. 13. Result of representation of text description in the
MSC standard.

SDL with fragments of HLL

MSC extension

Basic MSC

SDL

Verification Data
structures

Generation

Fig. 14. Integrated approach to conformation of MSC and
SDL in our technology today.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 33 No. 1 2007

IMPLEMENTATION OF THE CONFORMATION 33

solves the problems posed in Section 2, and, in the
authors’ opinion, the proposed integrated solution
allows one to successfully develop the MSC and SDL
models and ensure their consistency.

The authors believe that such an integrated approach
is also applicable in a number of other technologies for
filling the gap between an MSC-like model and the
SDL model. To this end, the following aspects should
be elaborated in a similar way:

• the static parts of the models are coordinated if
needed;

• the generation procedure is modified;
• the verification procedure is modified.
The condition imposed on the MSC-like model is

that it should be reducible to a finite-state-automaton.
In particular, this approach is applicable to other tech-
nologies mentioned in Section 2.

REFERENCES
1. ITU-T Recommendation Z.100: Specification and

description language (SDL), 1999.
2. ITU-T Recommendation Z.120: Message Sequence

Chart (MSC), 1999.
3. ITU-T MSC2000R3 Draft Z.120: Message Sequence

Charts ITU-T Recommendation Z.120, 1999.
4. Terekhov, A.N. et al., RTST++: Methodology and a

CASE Tool for the Development of Information Systems
and Software For Real-Time Systems, Programmiro-
vanie, 1999, no. 5, pp. 45–51 [Programming and Com-
puter Software (Engl. Transl.), 1999, no. 5, pp. 276–
281].

5. Rumbaugh, J., Jacobson, I., and Booch, G., The Unified
Modeling Language Reference Manual, Reading, Mass.:
Addison-Wesley, 1999.

6. Server of OMG group engaged in development of UML
methodology, Standards, Publications, and Tools,
http://www.omg.com.

7. Use Case Maps (UCMs) notation. Definitions, Publications,
and Tools, http://www.useCaseMaps.org/index.shtml.

8. Mansurov, N. and Zhukov, D., Automatic Synthesis of
SDL Models in Use Case Methodology, Proc. of the
9th SDL Forum (Montreal, Canada, 1999), Amsterdam:
Elsevier, 1999, pp. 225–240.

9. Robert, G., Khendek, F., and Grogono, P., Deriving an
SDL Specification with a Given Architecture from a Set
of MSCs, Proc. of the 8th SDL Forum (Evry, France,
1997), Amsterdam: Elsevier, 1997, pp. 197–212.

10. Abdalla, M., Khendek, F., and Butler, G., New Results
on Deriving SDL Specifications from MSCs, Proc. of the
9th SDL Forum (Montreal, Canada, 1999), Amsterdam:
Elsevier, 1999, pp. 55–67.

11. Li, J. and Horgan, J., Applying Formal Description Tech-
niques to Software Architectural Design, Comput. Com-
mun., 2000, vol. 23, no. 12, pp. 1169–1178.

12. Khendek, F. and Vincent, D., Enriching SDL Specifica-
tions with MSCs, Proc. of the 2nd Workshop of the SDL
Forum Society on SDL and MSC (SAM2000) (Grenoble,
France, 2000), pp. 305–319.

13. ETR 184. Methods for Testing and Specification (MTS).
Overview of validation techniques for European Tele-
communication Standards (ETSs) containing SDL,
1995.

14. EG 201 015. Version 1.2.1. Methods for Testing and
Specification (MTS); Specification of Protocols and Ser-
vices; Validation Methodology for Standards Using
Specification and Description Language (SDL). Hand-
book, 1999.

15. ETS 300 414. Methods for Testing and Specification
(MTS); Use of SDL in European Telecommunication
Standards Rules for Testability and Facilitating Valida-
tion, 1999.

16. Telelogic Tau 4.2 Documentation, 2001.
17. Sinclair, D., Stone, B., and Clynch, G., An Object Ori-

ented Methodology from Requirements to Validation,
Proc. of the 2nd Object Oriented Information Systems
Conference (OOIS’95) (Dublin, Ireland, 1995), pp. 265–
286.

18. Holzmann, G., Design and Validation of Computer Pro-
tocols, Englewood Cliffs, N.J.: Prentice-Hall, 1991.

19. Description, Publications, and Contact Information of
the Tool MOST, http://www.ispras.ru/ groups/case/
projects.html?2#2.

20. Site of the company producing the tool KLOCWork,
http://www.klocwork.com/.

21. Annotation of the tool KLOCWork on the site of SDL
Forum, http://www.sdl-forum.org/Tools/klocwork.htm.

22. Sokolov, V.V., Checking for Conformity of SDL Dia-
grams to MSC Documentation under Existing Differ-
ences, in Sistemnoe Programmirovanie (System Pro-
gramming), St. Petersburg: St. Petersburg State Univ.,
2004, pp. 366–390.

23. Damm, W. and Harel, D., LSCs: Breathing Life into
Message Sequence Charts, Proc. of the 3rd IFIP Int.
Conf. on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS’99) (Florence, Italy, 1999),
Dordrecht: Kluwer, 1999, pp. 293–312.

24. Concurrent Lanquages review http://mint.cs.man.ac.uk/
Projects/UPC/Languages/ConcurrentLanguages.html

