

0361-7688/99/2505- $22.00 © 1999

åÄàä “ç‡ÛÍ‡

/Interperiodica”0276

Programming and Computer Software, Vol. 25, No. 5, 1999, pp. 276–281.
Original Russian Text Copyright © 1999 by Terekhov, Romanovskii, Koznov, Dolgov, Ivanov.

INTRODUCTION

The increasing complexity of modern software
caused the development of a special branch of science,
Software Engineering, whose main goal is to create
efficient methods for complex software development.

Object-oriented methodologies for software devel-
opment have been intensively developed beginning
from the end of the 1980s. In 1997, OMG acknowl-
edged the UML standard [1] that appeared as a result of
merging a number of well-known methodologies. Up to
the present moment, several companies offered UML-
implementing CASE tools. Another object-oriented
approach used in the design of RTST++ is the ROOM
methodology [2], designed for real-time system devel-
opment.

On the other hand, for 20 years the ITU interna-
tional committee has been developing standards for
telecommunication system development: SDL [3],
MSC [4], etc. A large number of companies, mostly in
Europe, produce software that implements these stan-
dards.

From the third point of view, the structured method-
ologies for software development—SADT [5, 6], the
Yourdon method [7], etc.—have been developed begin-
ning from the 1970s. At the present time, these method-
ologies have taken their place in the field of information
system development. They are efficient for the overall
analysis of systems and, besides, are successfully used
to design relational databases and automatically gener-
ate forms, reports, and the like.

These three branches exist independently and apart:
with different methodological bases, different produc-
ing companies, etc. However, some integration of these
approaches is observed nowadays.

Within the SDL world, a certain opinion dominates
what object- oriented software development methodol-
ogies may be used for system analysis, but its further
specification is to be done using SDL. A formal speci-
fication of translation rules (OMT) [9] was designed
within the framework of the INSYDE international
project [8]. Many companies have implemented this
idea to this or that extent in their SDL products.

Well-known database development tools, which
were created on the basis of the structured approach to
the software development and now constitute an auton-
omous branch, offer ways to be integrated in CASE
tools implementing the UML. The fact that diagrams of
the UML classes are extensions of the entity–relation-
ship diagrams used for database structure specification
provides the basis for such integration.

In this work, we describe the RTST++ object-ori-
ented methodology and the CASE tool with the same
name, which implements it. The RTST++ methodology
is chiefly based on the UML [1], SDL [3], and ROOM
[2], and reflects the integration tendencies mentioned
above. Along with features that are standard for the
object-oriented approach, additional opportunities are
added to the RTST++ aimed at two special fields: soft-
ware for information systems and software for real-
time systems. Such an approach often spares the addi-
tional adjustment of a CASE tool to be applicable in
this domain; if, however, such an adjustment is needed,
it will be much easier and cheaper than, for instance,
the adjustment of CASE tools implementing the UML.

RTST++ does not claim to be able to cover all func-
tions of program products in the corresponding fields.
At the same time, taking into account the modern matu-
rity level of local- and wide-area information networks
and the increasing complexity of software, the cli-
ent/server technology becomes more and more popular

RTST++: Methodology and a CASE Tool for the Development
of Information Systems and Software For Real-Time Systems

A. N. Terekhov, K. Yu. Romanovskii, D. V. Koznov, P. S. Dolgov, and A. N. Ivanov

St. Petersburg State University, Bibliotechnaya pl., 2, St. Petersburg, 198904 Russia

Received January 29, 1999

Abstract

—Recently, two largest-scale branches of software development, where CASE tools are efficiently
used—information systems and real-time control systems— are observed to close in. In large information sys-
tems, a software response rate problem arises when servicing a big number of clients. As a rule, real-time con-
trol systems not only control specific equipment, but also work with a database. In this paper, the RTST++
object-oriented methodology is presented, which is created on the basis of UML, SDL, and ROOM, with certain
elements of the structured approach (basically, for the convenience of relational database development) and
reflects the tendencies mentioned above. Along with this, a CASE tool implementing this methodology,
RTST++, is presented.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 25

No. 5

1999

RTST++: METHODOLOGY AND A CASE TOOL 277

in information systems; i.e., many information systems
become dramatically event-driven; this aspect is exten-
sively investigated in real-time system development
methodologies. On the other hand, large distributed
real-time systems, as a rule, need to store, access, and
transfer large amounts of data, for example, traffic and
authentication information and not only control signals
and traffic data. Thus, RTST++ is suitable for software
development in both fields; however, it is the most effi-
cient for their intersection.

RTST++ (the methodology and the CASE tool

1

 is a
descendant of the RTST [12, 13]. It has been develop-
ing for the last ten years at the Mechanical and Mathe-
matical Department of St. Petersburg State University.

In the present paper, we present the RTST++ meth-
odology basics (process and models

2

; then, the corre-
sponding tools are described. After that, specific fea-
tures of RTST++ (the methodology and CASE tools),
designed for information system and real-time system
development, are discussed.

BASICS OF THE RTST++ METHODOLOGY

Considering no general aspects of the software
development process here (see it in, e.g., [16]), we now
list models used in RTST++ to describe the system
being developed:

•

 System requirement model:
(i) descriptive model describes some system

requirements in a text form;
(ii) utilization model describes requirements for the

system imposed by its environment, i.e., answers the
question, “how and for whom must the system operate?”;

(iii) functional model classifies situations in which
the system is used and describes the decomposition of
functions into subfunctions. Answers the question,
“how should system functions be implemented in terms
of their subfunctions?”.

•

 Dynamic model:
(i) object model describes roles of system objects;

answers the question: “which objects interact during
the execution of the system functions?”;

(ii) interaction model describes scenarios of object
interactions with each other and with users; answers the
question: “how do objects interact with each other
while performing system functions?”;

(iii) behavior model describes system object behav-
ior algorithms; answers the question “how should an
object behave to implement the system functions?”.

•

 Static model:
class model describes the system’s internal structure

and the structure of the data used; answers the question:
“how should the system be organized inside?”.

1

The previous version is described in [10, 11].

2

One can find a more formal definition of RTST++ models in [14].

In RTST++, significant attention has been payed to
the connectivity of the models, the control of project
information integrity both within the same model or
different models.

METHODOLOGY

Requirement Model

The work over a system in RTST++ begins with the
construction of a descriptive model containing, first of
all, the customer’s primary requirements. Among these
requirements, both functional and any other require-
ments (e.g., efficiency, cost, etc.) may be present. The
descriptive model is stored in RTST++ as a plain text
and formally is not connected with other models. This
model may be used also for the final specification of
nonfunctional requirements.

On the basis of the customer’s requirements, the full
list of functional requirements to the system is formed.
It is presented in terms of the utilization model and the
functional model. The final technical specification of
the system can be generated in accordance with the
RTST++ requirement model in a form needed by the
customer (an international or corporate standard, etc.).

The utilization model is designed in RTST++ to
describe the integration of the system in its environ-
ment. In terms of this model, all users of the system and
all its functions (utilization cases) are described in a
form in which they are distinguished by these users.
Then, classes may be associated with users; for utiliza-
tion cases, diagrams of the same type can be generated.
Further decomposition of the system functions is per-
formed using the functional model.

The functional model consists of a set of function
trees; the roots of these trees are utilization cases. A tree
may contain nodes of two types: a function itself and an
application of previously defined functions. In addition,
a function may have a group property, which means
that its child functions, in fact, are located instead of it
at the same position. The connection of an ancestor
node with descendant nodes may have a label describ-
ing its behavior [14, 15].

The utilization model in RTST++ is a subset of the
UML model with the same name. The job that is done
in the UML by the part of the utilization model which
is not included in RTST++ is to be done here using the
functional model, which is a variant of the functional
model used in structured methodologies of software
development. The RTST++ functional model is based
on the functional model from [15]; however, some
details were removed and others were added to it. In
RTST++, there is no need to use the functional model
as often as in [15], since we do not want to urge the
developer to use an algorithmic method of system
development. Added features are the use of functions,
function groups, and connection with the utilization
model.

278

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 25

No. 5

1999

TEREKHOV

et al

.

Dynamic Model

The dynamic model describes the system behavior;
that is, the interaction of its different components with
each other, the interaction of the system with its envi-
ronment, and the behavior of those components.

In the first stages of development, one may follow
one of two strategies. The first one is to specify system
classes at first, and then objects and interaction scenar-
ios. The second strategy suggests the reverse order of
the development (see [16] for more detail). The first
strategy is used more often when the developer is famil-
iar with the subject domain; the second strategy is used,
if the developer should study the unfamiliar subject
domain at the stage of the analysis.

The main goal of the object model is to describe dif-
ferent roles that the instances of system classes may
play. Each function from the functional model of
RTST++ may be assigned an object diagram whose
purpose it is to describe the typical “configuration” of
objects involved in the implementation of the function,
along with relations among these objects. When using
the object-oriented approach, the implementation of
system functions is a result of the cooperation of sev-
eral objects.

The main elements of this cooperation are objects–
roles and relations among them. The relation between
the object model and the scenario model is the same as
in the UML. An automatic class diagram generation
using an object diagram is provided.

When implementing a function, it is convenient to
represent the dynamics of object interaction in the form
of scenarios. In these scenarios, objects–roles, defined
on the object diagram for the given function or its call-
ing functions, take part. A scenario is a sequence of
events sorted by time, typically, these messages are sent
and received by objects.

The construction of scenarios for a given function is
begun with the definition of “straight paths,” i.e., paths
of the ideal execution of the function. At this stage, the
boundary, erroneous situations, special cases, etc. are
excluded from the consideration. Later scenarios are
constructed for these cases as well, or they are specified
by other means.

The behavior model describes the behavior of the
system constituent classes using an extended finite
automaton and is introduced in RTST++ in two nota-
tions: in STD [2] or SDL [3] style. In practice, the
behavior model defines processes in the system in
terms of states,

3

 events,

4

 and actions.

5

 Further, we shall
discuss the behavior model of a separate class. It is pos-
sible to begin the construction of such a model with the

3

 State is a stable state of an object, when it is ready to receive inter-
action requests from other objects. Some activity of the object
(e.g., input and output) may be associated with a state. A state
may be complex; i.e., it may contain substates.

4

 Event is an act of a message receiving or timer expiration.

5

Action is a message sending, timer, setting; a block of the code
in a target language.

analysis of all scenarios in which objects–roles of the
given class take part. The design of the system behavior
(the behavior of all its classes) on the basis of scenarios
(rather than directly) allows one to represent common
processes in the software in a more visual form and pro-
ceed from it to the construction of the internal behavior
of these process participants.

For the scenario model, we use a variant of the MSC
notation [4, 17]. Moreover, RTST++ enables binding
this model with the model of classes in a different way
than it is done in UML: In RTST++, one may choose
messages in scenarios (and also in the behavior model)
from interfaces described in the class model. Note also
that no formal relation between SDL and MSC is pre-
sumed in the SDL methodology; for example, in such a
well-known product as SDT [19] this relation is exclu-
sively dynamic.

Static Model

After the basic system scenarios have been created,
one may proceed to the specification of their mem-
bers—objects; i.e., to the class model construction. The
class model is built during the entire software develop-
ment process (see [16] for more detail).

In RTST++, the class model may contain the follow-
ing entities:

•

 class is the description of a group of similar
objects;

•

 template is a parameterized class with the possi-
bility to derive from it a normal class by substituting
parameter values;

•

 interface is a description of class interaction rules;

•

 representation is an analogue of the VIEW con-
struct in the SQL.

An example of a class diagram depicting classes,
ports, and interfaces is shown in Fig. 1.

The RTST++ class model implements a rather com-
plete subset of the UML classes. In addition, it includes
interfaces and ports adopted from ROOM and signifi-
cantly extended. The RTST++ class model also con-
tains database scheme modeling means.

Tools

RTST++ is a package of interdependent editors,
combined in an integrated development environment. It
includes:

•

 text editor;

•

 utilization cases editor;

•

 function editor;

•

 class editor;

•

 object editor;

•

 STD diagram editor;

•

 SDL diagram editor;

•

 interaction scenario editor;

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 25

No. 5

1999

RTST++: METHODOLOGY AND A CASE TOOL 279

•

 script editor;

•

 open library for the repository access.
All project data are stored in a single database, the

repository, which may be located in any relational
DBMS. Besides, there is a library of OLE objects for
accessing the repository from both the RTST++ built-in
script editor and from any environment supporting
OLE automation. RTST++ uses VBScript, a subset of
Visual Basic, as the script language.

INFORMATION SYSTEM DEVELOPMENT
RTST++ supports the development of the traditional

levels of information systems: database schemes, busi-
ness logic, user interface (screen forms). For the cre-
ation of a database scheme, we use the class model con-
taining an extension for databases.

In the class model, there are several elements aimed
directly at the database design. First of all, this is a spe-
cial attribute type index with the possibility to multiply
indices by associations (foreign keys). The second item
is an analogue of the VIEW construct of the SQL; it is
designed for visual editing of complex queries. Note
that these opportunities are not available in UML, SDL,
and ROOM.

If a database scheme does not extend beyond the tra-
ditional relational DBMS, then the further generation
of the database itself and the provision of access to it
are obvious. If, on the contrary, certain elements of the
object-oriented approach (firstly, inheritance) were
used in the database scheme, then either an object-ori-
ented dedicated DBMS or special means for the work
with data are required. However, it may be convenient
to work with a relational database in terms of the class
model. For this purpose, RTST++ provides a generator
of class library that assumes the main part of the inter-
action with the database without using SQL queries.

The standard RTST++ set up package includes the
script generating the database scheme using SQL DDL
and an object-oriented library for accessing the data-
base in the form of C++ classes and OLE Automation
objects.

Tools for the creation of screen forms in RTST++
are now under construction, but their main ideas are
already clear.

Basically, the user interface in information systems
consists of different screen forms, most of which are
similar to each other. It is either editing of the fields of
a single database record and/or dependent records or
editing a uniform element list, etc. One may perform
the form generation automatically in accordance with
the class model, allowing for relations among classes
and their properties.

Note that many CASE tools include built-in means
for work with screen forms; e.g., Designer/2000 and
Case/4/0. However, the tendency of integrating CASE
tools with well-known rapid application development
environments (Visual Basic, PowerBuilder, Delphi)

becomes more and more popular, since in this case
there is no need to repeat the corresponding subsystems
of these environments (screen form editors, in our
case). It is this approach that is implemented in the
ErWin CASE tool (see [18] for information about the
screen form generation). RTST++ moves in the same
direction: the work on the integration with Visual Basic
is now in progress; in the future we plan to integrate
with PowerBuilder and Deplhi. Differences between
RTST++ and ErWin are the following: We store forms
as separate elements of the class model, while ErWin
only generates them. With the ErWin approach, if the
database structure changes, the developer will have to
either re-generate forms with the loss of all the changes
made outside the CASE tool, or correct these forms so
that they correspond to the changed data scheme. In our
approach, keeping all the form information in the
repository makes it possible, during its re-generation
(e.g., after the database scheme modifications), to take
into account all the changes done in Visual Basic.

To specify the business logic, we use the behavior
model, which we plan to extend for the specification of
business processes.

REAL-TIME SYSTEM SOFTWARE
DEVELOPMENT

The main goal of RTST++ as applied to real-time
systems is to design a complex control logic with the
subsequent possibility of automatic code generation.
Note that RTST++ is not oriented in any special way to
the development of the hardware and software that
directly communicates with hardware (device drivers,
etc.); neither is it designed for developing low-level
network protocols. However, we believe that RTST++
is applicable for these tasks approximately to the same
extent as the UML.

As seen in practice, it is convenient and desriptive to
define direct paths of complex algorithms using scenar-
ios. At the beginning stages of the system development,
one should accurately define the logic of all interac-
tions. The rules of the system behavior in erroneous sit-
uations may be designed later. Using scenarios, one can
generate STD or SDL diagrams and continue to con-
struct specifications in this style, taking into account all
possible variants of the system behavior.

In terms of RTST++, the basic unit of a real-time
system is an object. Objects interact with each other via
interfaces. By interaction, we mean sending messages,
calling methods, and accessing the interface attributes.
Since more and more real- time systems become dis-
tributed and operate in a network environment, the con-
cept of the interface becomes more important. Earlier,
the situation was different; for example, earlier ver-
sions of the SDL language did not include interfaces.
RTST++ interfaces strongly differ from SDL gates (in
contents and methods of relation to classes), UML
interfaces (in contents, methods of relation to classes,

280

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 25

No. 5

1999

TEREKHOV

et al

.

and the representation method), and ROOM interfaces
(in contents and the representation method).

In real-time systems, the abstraction of entry and
exit points of different software components plays an
important role. That is why a port, a special element
from ROOM, was added to RTST++.

RTST++ provides several ways for port and inter-
face representation. The example shown in Fig. 1 may
be represented in an abbreviated form in RTST++
(see Fig. 2). In addition, there is the following variant
available: ports are not shown at all, while interfaces
are depicted as associations; it is convenient, when
objects of a given class may be linked with objects of
another class through the given port in only one way.

A software component defined as a class with ports
and interfaces may have a finite-automaton behavior,
described in terms of the behavior model of RTST++.
The behavior model, in turn, can be represented in two
alternative notations: based on the STD variant used in
ROOM or based on the extended SDL finite automaton.
Using the STD notation, it is convenient to define the
behavior of the system components on the early stages
of the development: numerous minor details may be
temporarily excluded from view. At the same time,
SDL diagrams make it possible to represent the small-
est details of algorithms.

This possibility becomes useful at the late stages of
the design. The information shown on STD diagrams,
may be “loaded” onto SDL diagrams; i.e., the results
obtained at the earlier stages will not be lost during the
transition to a more formal specification. In the frame-
work of RTST++, STD and SDL notations are used to
describe the unified behavior model; thus, the reverse is
always possible; i.e., one can load the results of the
work with the SDL editor onto an SDL diagram. Such
an approach differs from that used in INSYDE [8],
where STD diagrams are simply translated into SDL,
the reverse translation and the integrity of two of the
representations of the same information are not sup-
ported. SDL/PLUS [20] has sufficiently affected the
RTST++ behavior model: we do not use SDL data
types and expressions either. Instead, we use a more
flexible strategy of connection with implementation
languages [14] rather than a fixed language, as in [20].

CONCLUSION

The main characteristic feature of RTST++ is the
integration of an information system and real-time sys-
tem development tools. Now we briefly list the parts of
RTST++ which we paid the most attention to:

•

 component software development tools;

•

 finite-automaton approach to the specification of
the system behavior;

•

 database (object-oriented and relational) design
tools;

•

 connectivity of models and special means to keep
them consistent.

We note also that the RTST++ tool, which imple-
ments the methodology with the same name, will be
released in the near future, and everything we spoke
about in this paper will be implemented in it.

REFERENCES

1. UML semantics, version 1.1, http://www.rational.com/uml,
1977.

2. Selic, B., Gullekson, G., and Ward, P.T.,

RTST++ Time
Object-Oriented Modeling

, Wiley, 1994.
3. ITU Recommendation Z.100: Specification and Descrip-

tion Language (SDL-96), Geneva: ITU General Secre-
tariat, 1996.

Employee

Registrar Chief

Document
registration

Registered

Document

Order
approval

Approved
To revision

Order

Fig. 1.

 Class diagram.

Employee

Document

Order

Registrar Chief

Document registration

Order approval

Fig. 2.

 Class diagram with ridged interface notation.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 25

No. 5

1999

RTST++: METHODOLOGY AND A CASE TOOL 281

4. ITU Recommendation Z.120: Message Sequence Chart
(MSC-97), Geneva: ITU General Secretariat, 1997.

5. Marca, D.A. and McGowan, C.L.,

SADT: Structured
Analysis and Design Techniques

, New York: McGraw-
Hill, 1988.

6. Vendrov, A.M., CASE

-tekhnologii. Sovremennye
metody i sredstva proektirovaniya informacionnykh
sistem

 (CASE Technology: Modern Methods and Tools
for Information System Design), Moscow: Finansy i
statistika, 1998.

7. Yourdon, A.,

Modern Structured Analysis

, Prentice Hall,
1989.

8. Wasowski, M., Witaszek, D., Verschaeve, K., Wydae-
ghe,

B., Holz, E., and Jonckers, V., Methodology (the
Comlete OMT*). Report 1.4, 1995.

9. Rambaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W.,

Object-Oriented Modeling and Design

,
Prentice Hall, 1991.

10. Dolgov, P., Ivanov, A., Koznov, D., Lebedev, A.,
Murasheva, T., Parfenov, V., and Terekhov, A., Object-
Oriented Extension of the RTST Technology,

Zapiski
seminara kafedry sistemnogo programmirovaniya
“

CASE

-sredstva

RTST

++”

 (Proc. System Program-
ming Dept. Seminar on CASE tools of RTST++), St.
Petersburg: St. Petersburg Univ., 1998, no. 1, pp. 17–36.

11. Ivanov, A., Koznov, D., and Murasheva, T., RTST++
Behavior Model,

Zapiski seminara kafedry sistemnogo
programmirovaniya “

CASE

-sredstva

RTST

++”

 (Proc.
System Programming Dept. Seminar on CASE tools of
RTST++), St. Petersburg: St. Petersburg Univ., 1998,
no. 1, pp. 37–49.

12. Parfenov, V.V. and Terekhov., A.N., RTST: A Technol-
ogy for Technique Programming Embedded Real-Time
Systems,

Sistemnaya informatika

 (System Informatics),
no. 5:

Architectural, Formal, and Programming Models

,
Novosibirsk, 1997, pp. 228–256.

13. Terekhov, A.N., RTST: A Technology for Programming
Embedded Real- Time Systems,

Zapiski seminara
kafedry sistemnogo programmirovaniya “

CASE

-sred-
stva

RTST

++”

 (Proc. System Programming Dept. Sem-
inar on CASE tools of RTST++), St. Petersburg: St.
Petersburg Univ., 1998, no. 1, pp. 3–17.

14. RTST++ Methodology Notation Reference,

Technical
Report. www.

15. ITU SDL Methodology Guidelines and Bibliography.
Appendix I to Recommendation Z.100, Geneva: ITU
General Secretariat.

16. Booch, G.,

Object-Oriented Analysis and Design with
Application

, 2nd edition, Benjamin/Cummings, 1994.
17. Andersson, M. and Bergstrand, J., Formalizing Use Cases

with Message Sequence Charts,

Master thesis

, Dept. of
Communication Systems, Lund Institute of Technol-
ogy, EFD LTH, 1995, http://www.efd.lth.se/~d87man/
EXJOBB/ps.html.

18. Toshchev, A., ERwin and automatic client application
code generation,

Komp’yuter Press

 Moscow: 1998,
no. 10.

19. SDT 3.1,

Technical Presentation

, Telelogic, 1997.
20. Bardzin’, Ya.M., Kalkin’sh, A.A., Strods, Yu.F., and

Sytsko, V.A.,

Yazyk spetsifikatsii

SDL/PLUS

 i ego prime-
neniya

 (The SDL/PLUS Specification Language and Its
Applications), Riga: 1998.

