

 Reusable objects for optimized DSP design

A. Barabanov(*), M. Bombana(**), N. Fominykh(*), G. Gorla(**), A. Terekhov(*)

(**) ITALTEL- DRSI-RSC, Milano (Italy)

(*) TEPKOM- St. Petersburg (Russia)

Abstract. The design of embedded, customized and programmable digital signal

processors (DSPs) imposes new challenges to system designers. In this paper we

define a semi-automatic approach to the problem of an optimal DSP architecture

selection and subsequent algorithmic mapping. Two phases are envisaged: an

algorithmic development phase and an architectural development phase. The former is

based on the identification of general algorithmic objects and their formalization in a

library. The main criteria for the isolation of such objects is reusability. A ’what-if’

analysis utilizes the elements of the library to generate and evaluate alternative

algorithmic partitionings for the chosen architecture. The latter phase applies different

optimization criteria including code optimization and heuristics. Two test benches in

the area of mobile phone systems are presented to highlight the potential benefits of

the proposed approach to the design of industrial devices.

1. Introduction

The history of DSP goes all the way from boards and ASIC based hardware to algorithm-

specific software running on general purpose microprocessors. The former group includes the

first technological approaches to perform embedded digital signal processing operations,

usually known for the specific function performed, like modem, compression, etc., and not for

any special architecture adopted, processor-like or algorithm specific. The latter group

performs signal treatment, in most cases as a batch process on saved waveforms, sometimes

with real time rendering, seldom, only in favorable cases, with full real time performance.

At the intermediate stage, dealing with real time processing and exploiting today’s state of

the art, are located the programmable DSPs, that are used in different moods and flavors by

different designers as ”function and algorithm specific ICs”, coupling specific software with

specific hardware. They implement the evolution of those older versions of the ASICs

performing signal-processing operations at the earlier stages of the technology that were

complemented with pre-programmed, non-volatile memories implementing algorithmic-

specific routines.

The adoption of this technology forces the designers of DSPs and of systems adopting

DSPs to make consistently similar choices for categories of similar algorithms, those that

usually refer to applications falling into the same discipline or even leading to the same

category of products. Some examples of this are different designs adopting the same processor

for slightly different algorithms dedicated to the same application or similar processors,

competing about performances, used for the same kind of algorithms in one specific

applicative field.

In this paper we describe a semi-automatic approach to the identification of re-usable

algorithm-based semantical objects, a set of primitive entities meaningful for the processing of

algorithms, not (or not just) for structural descriptions. They will be organized in a user-

friendly library to support the system designer in the task of the optimal DSP architecture

identification and subsequent algorithmic mapping. In section 2 the state of the art of design

methodology is sketched in order to identify the basic requirements and constraints coming

from the users. These elements provide the rationale for the following activity, and set the

priorities which lead to the definition of a design flow for mixed systems. In section 3 we

describe a design phase based on the identification of reusable algorithmic objects and their

formalization into a library. First a taxonomy of objects is defined, with a granularity of six

levels of complexity. From the analysis of different classes of algorithms in the telecom

domain the candidates for hw and sw trade off evaluation are identified. This analysis has

been done both manually and in a semi-automated way. The identified elements, modeled in

C++ as design primitives and provided with profiling information, are grouped in an

algorithmic library on which any other algorithmic solution can be decomposed and re-

assembled, as a result of a ”what if” analysis.

In section 4 different optimization procedures minimizing costs are applied, including

abstract representations of time properties, code optimization, transformation of the assembler

code, heuristics. In section 5 the LPC algorithm, applied for source coding/decoding in the

GSM specification [1], and the MBE algorithm [2] are shortly described, and used as a test

bench to highlight the benefits of the proposed algorithmic approach. Exploitation of

reusability was the key driving factor of this analysis. Finally section 6 contains some

conclusions and the outline of future work.

2. Users requirements for the design of mixed hw and sw components

The present situation, mid-way between high performance multipurpose processors and

ROM-based ASICs, could be labeled as that of multi-function DSPs. Different programmable

DSPs, dedicated to the same application, often adopt similar architectures, only adapting size

and structure of memories and buses to the specific algorithms, and implementing a dedicated

instruction set. Larger differences exist between DSPs dedicated to different applications;

however, in many cases the architectures of the programmable DSPs are very similar, just

some co-processing units or the operation set or the i/o communication can be different. The

design of a specific DSP to achieve challenging performance in a definite market niche is time

and manpower expensive, and thus it is usually tackled only for the larger markets. ASIC-like

techniques involving libraries, reuse and customizability are not pursued, thus under-

exploiting smaller market niches. Basically the overall picture is very similar to the ’good old

days’ of custom ICs before the advent of semicustom: specialized DSPs are available only for

big undertakings. And system designers have to adapt the same techniques to make products

for different applications. No library for modular approach or easy tuning and redesign is

available. As a consequence, according to our perception, the efforts for the progress of

today’s semiconductor processing technology must be concentrated on hw and sw co-design

techniques.

Due to such considerations it is clear that severe strategies must be adopted to minimize the

impact on design time and quality. Key points of this strategy is the use of standards and

reuse. In general, adopting standards makes integration easier, exploits available know-how in

the field producing a higher return on investment. Designers’ acceptance is also guaranteed by

a gradual modification of the design flow to introduce new tools to cope with new and

complex applications.

Reuse can be applied at different levels, allowing a quicker design time, more flexible

implementations, and basically a return of investments. In the design world, reuse is

associated to the generation of libraries, where parametric hw or sw cells/routines are

available to users. Anyway this concept can be applied also in other ways: using cores out of

the shelf, or existing DSP cores, applying logic synthesis tools to generate hw/sw interfaces or

specific execution units.

Summarizing all the requirements coming both from the designers and from the market, the

definition of a co-design environment should guarantee:

1. the possibility for the designer to conduct an exploratory activity in the first and most

abstract design phases, applying a ’what-if’ analysis in the hw/sw partitioning;

2. a quick and automatic generation of correct by construction hw and sw solutions

(through VHDL logic synthesis and compilation);

3. the application of standard languages as C, C++ and VHDL for specifying systems

and interfaces;

4. the application at all level of the concept of reuse as basic element to provide return of

investment, shorter design cycles and shorter time to market;

5. a nice integration in the existing design flows, exploiting as much as possible, what is

already available to users.

3. Object identification at algorithmic level

The goal of this activity was that of defining algorithm bound primitive objects, and of

designing architectures able to be tuned to subsets of the classes of objects. Software

reusability is large but at a rather low level; hardware reusability is very restricted, and the

high level of the blocks forces suboptimal adoptions. The use of algorithm specific blocks,

like dedicated hw implementations of some instructions or co-processors, can provide the

proper granularity without compromising performance (as for microinstructions) or

architecture and power consumption (as adapting standard blocks). basically, to make

profitable use of libraries, these have to be reusable at the highest level that does not include

product specific convention (like frame format or protocol conventions) and is not so generic

to be trivial (like bit addition, byte logic etc.).

Multiple steps were involved in this task:

1. identification of the criteria to drive the partitioning phase;

2. formalization of general rules to be applied in the partitioning phase;

3. implementation of a semi-automatic application of the rules of point 2;

4. definition of a taxonomy of modules according to complexity;

5. definition of an algorithmic library specialized for sets of similar algorithms.

Point 1 provides the rationale for this activity, points 2 and 3 implement a semi-automatic

’what-if’ analysis, point 4 and 5 define the data-base on which such analysis is conducted.

An object oriented approach was selected to define the modules and to encapsulate the

information in their structures. C is widely used for system level specification and C-like

languages ([3],[4]) and C++ have been used extensively ([5],[6]) for the specification of

mixed systems. So C++ has been selected for the implementation of the environment based on

the preceding five points. The link between this design phase and the following steps in the

design flow is shown in the next section.

Criteria were identified from an analysis of users’ needs and market requirements:

 reusability, i.e. frequent appearance of the procedure in classes of algorithms;

 encapsulation, i.e. independence from the rest of the algorithm;

 semantic consistence, i.e. the completeness of behavior.

Moreover to be useful to the following design phases, the objects share the following

features:

1. several implementation methods are associated to one behavior, i.e. to one object;

2. hierarchical descriptions are allowed;

3. hardware resources are taken into account as parameters of the object;

4. behaviors are independent from subsequent hw implementations.

Parametrization is the key for heavy reuse. Each object has its own mathematical meaning

(behavior) which is not connected to any hardware implementation. Anyway the computation

of the I/O mapping can be conducted in different ways. For example, the representation of

variables with fixed point numbers can have different number of digits. Numerical methods

for the same mathematical function can be very different and therefore give different accuracy

of the results (for example, the implementation of the autocorrelation procedure in time-

domain and in frequency-domain; various forms of filter implementations, and so on). In this

way, parametrization can cover very different aspects of the object definitions.

Moreover performance parameters, such as computation time, accuracy, required memory,

etc., are associated to every object. All these are used in the transformational phase

(dynamical tuning) and they will guide the choice of one implementation method in the final

object oriented program. Alternatives are selected evaluating cost functions of the

performance parameters. To this end the input algorithm is transformed into a special object

scheme containing all possible alternative implementations.

The scheme looks like a graph in which nodes are objects and links correspond to

implementation methods. An object scheme represents the source algorithm where no

commitment to instances has been made for any object. Therefore the scheme has not the

structure of a DSP network. The scheme may be treated as a general type graph because of

recursive calls.

According to these requirements all objects were divided for into 6 levels;

Level 0. Logical operations with floating-point and fixed-point numbers. These operations are

very close to hardware and they have a simple implementation. The main examples are shift,

truncation and assignment operators.

Level 1. Arithmetic operations with floating-point and fixed-point numbers. These operations

are more complicated then logical operations. Some of them may have different

implementations in hardware. Consider as an example operations from the class FIXED used

in the object oriented design of GSM algorithm (Section 5). The implementation of the

arithmetic operations in this class is a mixture between integer and floating-point. The

operands are considered as floating- point but no shift is made in arithmetic operation as it is

for integer operands. This helps to control overflow and underflow errors at the stage of

dynamic tuning.

Level 2. Complex arithmetic and additional functions of floating-point and fixed- point

numbers. The fixed point arithmetic chosen in the final algorithm version reflects the

hardware structure of the DSP processor. Although fixed complex arithmetic is usually not

implemented in hardware (for example, complex MAC), these operations are very used in

DSP algorithms.

Level 3. Matrix and vector arithmetic; sequential elementary signal functions and the basic

procedures of signal processing like FFT and filtering. Sequential operations are inherent to

signal processing and therefore special hardware tools should be taken into account on the

stage of hw/sw partitioning. A special research has been conducted to select a set of widely

used filters. As a result, the first order FIR and IIR filters, lattice filters, the convolution filters

with both time and spectral implementations were described as objects.

Level 4. Object-oriented operations which are either standard in the signal processing theory

or mathematically meaningful. They do not belong to Level 3 because of their complexity.

Most of these operations correspond to well known macros collected in libraries in MATLAB,

FORTRAN, C and other standard languages, for example butterfies, direct/inverse FFTs, etc.

Level 5. Specific signal processing functions. If a part of the input algorithm possesses all

object features then it can be isolated and used in the design flow. Such non standard objects

can be useful in specific application domains, for example Viterbi decoder, Shur recursive

algorithm, etc.

Objects hierarchy, linked to structural definitions, is allowed. Each object can be composed

of elements belonging to the same or lower levels. Objects of the first four levels are not

related to a specific application domain, so maximal reuse is expected. These objects are

rather basic (standard arithmetic and logical operations as well as their vector and matrix

generalizations) and no ad-hoc rules are required for their identification. For the objects

included in the two highest levels (4 and 5) the criteria for object identification can be

extrapolated from a similar field, i.e. criteria of a search restriction when the best method for

some algorithm implementation is being found.

The traditional approach to the search restriction is a decomposition of the source

algorithm: the algorithm description in detail is replaced by a block description which is

essentially shorter and hence it admits an exhaustive search for optimization. As a result, the

source algorithm is written by a flow chart that is customary for specialists who often use the

method indicated for better understanding and analysis of the algorithm. Individual blocks

along which a search is made are called objects. Thus the following rule is justified:

 R1. Similar parts of programs form a single object.

The encapsulation condition requires the independence of the object from the rest of the

program. Therefore R1 is constrained by the following condition:

C1. The length of input and output parameters which must be set whenever the object is

called must be less than the length of the body of the object.

Thresholds for the comparison of such lengths are selected taking into account the following

conditions: 1) frequency of the object in the set of algorithms; 2) memory restriction and

restriction on the total number of objects in the system; 3) organization of a search in the

a2

Object-oriented
model

Executable
 PC code

Trace estimation
(timing prof)

C++
program

 Test
vectors

Profiling

statistics

a1

a3 a4

Algorithmic
Objects

Library

Design
capture

Object-oriented
implementation

architecture's development phase

algorithmic development phase

Figure 1. Algorithmic design flow.

object system; 4) complexity increase of the search procedure with increasing number of

objects. R1 with condition C1 operates at an abstract level without taking into account the

implementation in hardware. A further condition on thresholds is the following:

C2. Thresholds for accepting a new object according to C1 must be decreased if the possible

object has relatively low complexity but represents a bottle neck for memory or speed.

C2 formalizes the feedback in the process of algorithm partitioning, dynamic tuning and code

optimization.

The objects so identified are grouped in libraries. These libraries are of generic use, but

some elements may be application domain dependent. The huge background in signal

processing theory provides a wide set of pre-defined modules. Many functions have been

extensively studied, and are the first candidates for the building of the object library.

Reusability in these cases is guaranteed by the underlying mathematical theory. An algorithm

having a standard name becomes a block which can be considered as a single operator in

different DSP algorithms.

The automation of object selection involves two steps: the development of some methods

of program re-engineering to apply rules and identify objects, and the design of a language for

manipulating them, for optimizing their selection and for generating a final program in the

object oriented style.

The entry point for this design phase is a description of the algorithm. The solution is

independent from the adopted style: flow charts, mathematical formulas or a computable

program in an algorithmic language are allowed. The final result of this design phase will an

object- oriented program in C++.

The designer writes the specification of the algorithm using as much as possible elements

of the library (figure 1). The ideal solution of constructing a flow chart made only of blocks

taken from the library is seldom reached. When this is not possible, the library must be

customized and new objects defined by the user.

Program re-engineering is applied in cases when the algorithm is described in a

programming language. In some cases, for clearness sake or for efficiency reasons, a pre-

compiler based on some heuristic rules is used prior to the application of the re-engineering

program. The results of the automatic application of these rules to the test bench will be

shown in section 5.

4. Architectural mappings and optimizations

Timing constraints are a basic part of the specification of any mixed hw/sw components.

This information is lacking in the algorithmic analysis of previous section. Therefore we

would like to improve our technology by adding special features to formulate time constraints

specifications, taking into account the requirements dynamic statistics (profiling). Software is

developed together with a statistically representative test set; the profiling characteristics

received as a result of final program execution on this test set are necessary to create

quantitative estimations of the alternative decisions.

This design phase has the goal of optimizing the cost of the final device varying the

distribution between software and hardware, selecting a program structure (in a wide class of

equivalent program transformations) and a hardware architecture (taking into account that the

target device is intended just for this specified task). The proposed design flow is shown in

figure 3.

Our methodology is based on the assumption that the input for the development process

contains:

 the precise definition of all external and internal events;

 algorithms for all processes, including internal signals interaction;

 clearly specified real-time restrictions for external events.

Algorithmic descriptions already contain a significant part of information necessary for the

complete system specification of the device. For the needs of the next steps the specifications

should be expanded with:

 precise description of events handling (buffering, interruptions, scanning etc.);

 indication of the temporal relations between signals;

The first point, though insignificant on an algorithm development phase, has a great

influence on a target device complexity and must be strictly specified. For the second point,

not only is required to specify these relations for the separate processes but for the whole

system.

At this stage it is necessary to represent the algorithm in a maximum parallel form to give

an opportunity of conveyer execution. Sometimes the initial algorithm must be redesigned to

meet this requirements.

At the stage of global optimization (S2) traditional compilers optimization based on global

analysis is executed. The result is a transformation of the initial program into an internal

representation. Note that the stage may already use the architecture-dependent information

about relative complexities of elementary operations. A problem connected with global

optimization is the maximum static planning of processes: every external event generates a

sequence of internal events (the transition in finite automata model); external events are

asynchronous, but inherited sequence of internal events is mostly static. So all calculations

inside this sequence can be planned statically, in particular, all the resources can be distributed

statically.

At the stage of synthesis of the machine code (S3) the compiler uses a locally optimal

translation maintaining the source program structure. The most crucial aspect is to load all

Figure 2. DSP_Machine design flow.
Implementation phase

Architectural development phase

Algorithmic development phase

DSP

 ARCHITECTURE

base
 architecture

 S1

S2

S3

 S4

S5

 S6

 S7

S8 S9 S10

 Profiling
 statistics

C++ program

DSP Spec.
 (processes, events)

Optimized
program threads

DSP_machine
code

Design constr.

Improvements
of DSP architecture

Matched
DSP architecture

HW

implement.
Firmware
implement.

Machine code
implement.

processor equipment elements in accordance with the conveyer organization of the execution.

In addition to methods used in compilers for RISC / VLIW architectures, we use the results of

static planning of execution, trying to put different program chains onto different hardware

elements.

An interpreter automatically customized to the current hardware architecture is used to

check the conformity to the initial temporal restrictions (S4). This interpreter does not execute

all the machine instructions. Only execution time is important here. At this stage we can rely

upon static decomposition of processes with statically known separate statements frequencies

and their relative costs in the current architecture. When the estimation results are negative

(violation of temporal restrictions and excessive productivity) the flow proceeds to S5, where

a set of possible updating of the architecture are proposed (special instructions on the base of

the same equipment, additional functions for already presented processing blocks, additional

hardware accelerators). In case of positive result the flow finalizes the processor architecture

(S6).

In S6 the designer evaluates which proposals of stage S5 will be taken into account.

According to that, the architecture is modified accordingly in all its aspects (e.g. compilers,

interpreters etc. must be automatically tuned to new architecture). After the fulfillment of this

stage, it is necessary to map the initial problem to the already updated architecture of the

processor, i.e. pass through all stages of the considered technological cycle, from the stage of

global optimization.

At the stage of final processor architecture consolidation (S7), the final refinements of

processor architecture are executed in accordance with the requirements of the application,

including the removal of unused instructions, the register size, the depth of procedure stacks,

the optimization of coding, etc.

The design technology, based on the VHDL, is applied for hardware design (S8). In future,

the possibility of automatic generation of the VHDL-programs corresponding to the given

specifications of processor architecture can be considered. Although a great experience in

microprogramming generation (for fixed structure processors) is available (S9), this task still

is only partially automatic at the moment. Finally the stage of executable code generation

(S10) is activated and all programs are compiled and linked together with a special dispatcher

program (real time kernel).

5. A case study in digital communication systems: GSM and MBE

A. Description of the test benches. One of the most powerful speech analysis techniques is the

method of linear predictive analysis (LPC) ([7],[8]). This method has become the predominant

technique for estimating the basic speech parameters, such as pitch, formants, spectra, vocal

tract area functions, and for representing speech for low bit rate transmission or storage. The

importance of this method lies both in its ability to provide extremely accurate estimates of

speech parameters, and in its relative speed of computation.

 The basic idea behind linear predictive analysis is that a speech sample can be

approximated as a linear combination of past speech samples. By minimizing the sum of the

squared differences (over a finite interval) between the actual speech samples and the

predicted ones, a unique set of predictor coefficients can be determined. Different

computational techniques can be used for obtaining the values of LPC parameters, and are

considered as variations in this algorithmic family ([9],[10],[11],[12],[13]).

This transcoding procedure has found application in the full rate traffic channel (TCH) of

the pan European digital Mobile Radio (DMR) system (GSM - Full Rate Speech Transcoding)

[Rec6.10]. In this case it performs the mapping between input blocks of 160 speech samples

in 13 bit uniform PCM format to encoded blocks of 260 bits and from encoded blocks of 260

bits to output blocks of 160 reconstructed speech samples. The sampling rate is 8000

sample/s, leading to an average bit rate for the encoded bit stream of 13 kbit/s. The coding

scheme is the so-called Regular Pulse Excitation - Long Term Prediction - Linear Predictive

Coder (RPE-LTP).

The Multi-Band Excitation (MBE) Speech Model was recently developed ([14],[15]). This

model uses a more flexible representation of the speech excitation than traditional speech

models. As a consequence, it is able to produce more natural sounding speech, and it is more

robust in the presence of acoustic background noise. This properties have made the MBE

speech model a prime framework for the development of high quality low-rate speech coders.

The name derives from the fact that a large number (up to twenty) of frequency bands are

considered. Speech coders based on the MBE speech model estimate a set of model

parameters for each segment of speech: a fundamental frequency, a set of voiced or unvoiced

decisions (V/UV) which characterize the excitation signal, and a set of spectral amplitudes

which characterize the spectral envelope. Once the model parameters have been estimated for

each segment, they are quantized and transmitted to the decoder.

Schur
recursion

Pre-emphasis

Offset

Auto-cor
relation

Segmentation

Log Area
Ratios

Quantizer

LAR
decoder

Interpolation

Reflection

coefficients

 Inverse
 Filter

Weighting

RPE grid
selection

APCM
Quantizer

Inverse
APCM

RPE grid
position

 LTP
parameter

Quantizer/
 coder

 LTP
parameter

Figure 3. GSM Speech Encoder building blocks.

B. Description of the algorithms in objects. DSP layer in the GSM system consists of a

transmitting and a receiving section. The former includes the Discontinuous Transmission

Handler of the Transmitter (TX DTX), coding and modulation. The latter includes

demodulation, decoding and the Discontinuous Transmission Handler of the Receiver (RX

DTX). The modules which are subject to non trivial hw/sw partitioning are included in the

following sub-blocks: equalization in demodulation-decoding; speech encoder and voice

activity detector in TX DTX; speech encoder in RX DTX.

The objects identified in the specification of the GSM speech encoder/decoder are shown

in Fig. 3. Each object has a well-defined mathematical meaning. Some of them include

smaller objects as their sub-parts. The level 3 objects include the following elementary DSP

functions: vector segmentation, quantizer, de-quantizer, LTP gain decoder, pushing the buffer,

substitution of a vector segment. Level 4 objects consist of the standard DSP functions:

autocorrelation, LAR update (piece-linear coding), sequential quantizer, interpolation, LTP

gain coder, APCM quantizer. For the most part these objects consist of sequential operations

of Levels 0 and 1. The following specific objects belong to Level 5: Schur recursion, LTP

parameters update, signal compression by decimation.

The objects extracted satisfy the requirements of reusability, encapsulation and semantic

consistence indicated in Section 1. The autocorrelation and Schur recursion are used twice in

the voice activity detector block inside TX DTX. Moreover, the speech decoder system can be

as a part of the speech encoder and includes the same objects. The classes FIXED,

COMPLEX and MATRIX, defining the objects belonging to Levels 1 and 2, implement

various kinds of arithmetic operations in order to be tuned to specific hardware or for program

accuracy improving and debugging. This proves objects reusability. The encapsulation

requirement is essential for the objects of Levels 4, 5. The number of internal variables in the

extracted objects is greater than the number of input and output data. Moreover, the

computations have some specific features and they are independent of the rest of the

algorithm. Finally, semantic consistence is self-evident. These blocks are considered as

natural units in the investigation of the algorithm properties.

The time profiling allows to quickly identify the units crucial for time constraints. The

objects ”Inverse filter A(z)” and ”LTP parameters” take 65 per cent of the computing time, so

they are good candidates for hardware implementation.

Also the objects of the MBE vocoder/decoder (figure 4) have a hierarchical structure

composed of objects of the lower levels. The standard procedures of FFT, Hamming

windowing, vector normalization, norm evaluation and vector multiplication (level 3) are used

several times. Level 2 objects include: pitch tracker, dynamic programming, quantizer (log-

increment and uniform), LQ estimates (constant and piece-wise), magnitude estimation. The

decoder has a bank of harmonic oscillators, a similar quantizer/de-quantizer object and also

standard tuning harmonic signal and piece-linear interpolation. Some other objects are specific

and belong to Level 5: errors vs pitch period, get residuals, direct pitch estimate, get envelope,

unvoiced envelope update, - from the encoder, and unvoiced signal computation from the

decoder.

Shifts, cycle shifts and other operations of Level 0 are used in both RPE-LTP and MBE

vocoder algorithms. The sequential arithmetic operations like norm evaluation, vector

multiplication and quantizer appeared several times as subsystems. Despite the relatively

small size of the programs some basic signal processing operations appear several times. They

are FFT, autocorrelation, Schur algorithm, interpolation.

Each extracted object has a clear semantic. It was noteworthy that a purely syntactic

analysis of the program, based on the rules of section 3, resulted in a partitioning very similar

to that done manually by the programmer. The MBE encoder program contains 19 objects. 16

of them were exactly extracted by the re-engineering program which identified totally 28

candidates for separate procedures. For the MBE decoder the re-engineering program found 6

objects over 8 in a range of 20 candidates. The superfluous candidates are rejected in an

interactive session with the user. These numerical results confirm that the partitioning the

program into objects satisfying reusability, encapsulation and completeness conditions closely

matches the design steps of an experienced designer

a) MBE Encoder b) MBE Decoder

Windowing

Autocorrelation

Pitch tracking

Dynamic
Programming

Magnitude
Estimation

Bank of
Oscillators

Computation of
unvoiced signal

Get envelope

LQ solutionLQ solution

Quantizer

Dequantizer

Figure 4. MBE building blocks.

7. Conclusions and future work

The results obtained up to now show that the presented approach is promising for solving

some of the open problems in the codesign area. We focused on the specification phase, due

to the relative weight that this phase covers in the telecom domain. Quick identification of

data-path modules already described and profiled in a library, allows quick definition of a

partitioning strategy and an early indications for binding. Future research will be devoted to

expand the second phase of the design flow here proposed (architectural mapping and

optimizations), and to link it with the algorithmic approach to exploit synergies in view of

reducing design time and enhancing quality for the manufacturing of mixed hw/sw

components.

References

[1] GSM Recommendation, ’13 kbit/s Regular Pulse Excitation - Long Term Prediction - Linear Predictive

Coder for use in the Pan-European Digital Mobile Radio System’, CEPT/CCH/GSM 06.10, Sept. 1988

[2] John C. Hardwick, Jae S. Lim, ’The application of the IMBE speech coder to mobile communications’,

Proc. ICASSP ’91, 1991

[3] OLYMPUS

[6] COSYMA

[5] C. Weiler, U. Kebschull and W. Rosenstiel, ’C++ base classes for specification, simulation and partitioning

of hw/sw systems’, Proc. ASP-DAC ’95, 1995

[6] G. Kock, U. Kebschull and W. Rosenstiel, ’A prototype environment for hw/sw codesign in the COBRA

Project’, Proc. 3rd Workshop on hw/sw Codesign, 1994

[7] L.R. Rabiner and R.W. Schafer, ’Digital Processing of Speech Signals’, New York, Prentice-Hall, 1978

[8] J.D. Markel, A.H. Gray, ’Linear Prediction of Speech’, New York, Springer-Verlag, 1976

[9] Thomas Parsons, ’Voice and Speech processing’, New York: McGraw-Hill, 1986

[10] Kevin T. Malone, Thomas R. Fischer,’Trellis-searched adaptive predictive coding of speech’, IEEE Trans.

on Speech and Audio Proc., Vol.1, n.2, Apr 1993

[11] Roy C. Snell, Fausto Milinazzo, ’Formant location from LPC analysis data’, IEEE Trans. on Speech and

Audio Proc., Vol.1, n.2, Apr 1993

[12] W.P. LeBlanc, B. Bhattacharya, S. A. Mahmoud, ’Efficient search and design procedures for robust multi-

stage VQ of LPC parameters for 4 kb/s speech coding’, IEEE Trans. on Speech and Audio Proc., Vol.1, n.4,

Oct 1993

[13] Alv I. Aarskog, Hans C. Guren, ’Predictive coding of speech using microphone/speaker adaptation and

vector quantization’, IEEE Trans. on Speech and Audio Proc., Vol.2, n.2, Apr 1994

[14] Daniel W. Griffin, Jae S. Lim, ’Multiband Excitation Vocoder’, IEEE Trans. on ASSP, Vol. 36, n. 8, Aug.

1988

[15] Daniel W. Griffin, Jae S. Lim, ’A new model-based speech analysis/synthesis system’, Proc. ICASSP ’85,

Tampa, Mar. 1985

